Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clemson bioengineer uses nanoparticles to target drugs

Frank Alexis, PhD
Assistant Professor of Bioengineering
Frank Alexis, PhD Assistant Professor of Bioengineering

Abstract:
Clemson bioengineer Frank Alexis is designing new ways to target drugs and reduce the chances for side effects.

Clemson bioengineer uses nanoparticles to target drugs

Clemson, SC | Posted on October 8th, 2009

Pharmaceutical commercials can cause the unsettling feeling that if the disease doesn't kill, the cure will, what with a drug's long list of side effects and warnings. Many therapeutic drugs administered by pill, cream, syringe, IV or liquid can be a hit or miss delivery system. Researchers report that only 1 of 100,000 molecules of an intravenous drug make it to the intended spot in the body.

"The big issues for making medicines more effective are getting drugs to where they are needed and keeping them from breaking down as they circulate through the body," said Alexis. "A way to improve targeting a drug and preventing it from being passed out of the body is putting it in envelopes — putting the drug inside something to protect it until it's at the right spot."

The envelopes Alexis uses are nanoparticles. Think of an M&M, with the nanoparticle being the hard outer candy shell and the chocolate being the medicine. The goal would be the same as for an M&M — to melt in the right place.

Nanotechnology operates on the molecular level. It involves engineering materials on such a small scale that the results can be seen only with electron and atomic force microscopes. Nano-engineers take advantage of natural forces — positive and negative electrical charges, attraction and repulsion, surface texture — to have materials self assemble.

"You would be surprised how we mimic what nature does," said Alexis. It is setting off a storm of innovations in many fields — biology, medicine, material science, computers, manufacturing, physics.

"Nanoparticles can be modified many ways," said Alexis. "They can be coated so that they can be durable and stable. They can be patterned so that they match up like a key and a lock to connect to certain cells, tissues and organs. Some drugs are not taken up because of their physical and chemical properties."

A handful of nanoparticle medicines already have been approved for use treating diseases, particularly cancers. Alexis and other bioengineers are ushering in a new era in medicine.

A challenge for oral medicines, for example, is getting them to do some good before the body destroys them. A patient's metabolism can do its job too well taking a drug out of circulation.

Called "first-pass metabolism," the liver breaks down a drug during its first trip circulating through the body. The result is doctors must use greater amounts of oral medicines to achieve the therapeutic effect. Negative reactions from the higher doses or the inconvenience from prolonged treatment cause many patients to stop taking their medicines.

Nanoparticles can be made to survive the first pass. The particles also can be made to get beyond the body's immune system. Multi-layers on the nanoparticles or nanoshells can resist the body's defenses, enabling the medicine to last longer or reach the intended location.

Dendrimers are nanoparticles that could become the Swiss Army knives of targeted drug delivery. The particles can be made so that a number of different kinds of molecules could be attached to it. One group of molecules could fight the disease, another could enhance images to track the drug, a third could carry a chemical trigger to release the medicine by command from outside the body, another, still, that could send signals about results.

"We are moving ahead in nanoscience in laboratories throughout the world," said Alexis. "Nanoparticle functionalities become more and more complex and the next step is for the research to develop technologies allowing their transfer from the research bench to a pharmaceutical drug. New ways of targeting drugs that will be more effective and safe and more agreeable to patients is just over the horizon."

####

About Clemson University
Clemson University offers countless opportunities for students, faculty and community members to participate in decades of tradition, improve quality of life for their surrounding communities and pursue academic challenges. Ranked as the 22nd best national public university by U.S.News and World Report, Clemson is a vibrant student-centered community that thrives on leadership, collaboration and a winning spirit — in academics, athletics and life.

To become one of the country’s top-tier research universities, Clemson University has combined the scientific and technological horsepower of a major research university with the academic and social environment of a small college. Just as founder Thomas Green Clemson intertwined his life with the state’s economic and educational development, this University’s students and faculty impact lives daily with their research and service.

For more information, please click here

Contacts:
Frank Alexis

864-656-7284

Peter Kent
Media Contact

864-656-4355

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Self Assembly

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Nanomedicine

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Nanobiotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Programming adult stem cells to treat muscular dystrophy and more by mimicking nature July 22nd, 2015

Biophotonics - Global Strategic Business Report 2015 July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project