Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum mechanics on the cheap

Electron distributions around atoms (Images courtesy of IBM)
Electron distributions around atoms (Images courtesy of IBM)

Abstract:
NPL, together with IBM and the University of Edinburgh, have developed a new technique that dramatically improves the accuracy and efficiency of computer models of materials. By applying aspects of quantum mechanics in new ways, highly accurate simulations of materials may be achieved quicker and more efficiently than is currently possible with standard methods.

Quantum mechanics on the cheap

UK | Posted on October 8th, 2009

Quantum mechanics is all about understanding how things behave at the atomic scale. Many computer simulations of materials make simple assumptions about how a material behaves at the atomic scale which do not necessarily reflect reality and compromise predictive power.

Incorporating improved physical descriptions of quantum phenomena is a major challenge and advances in this area is great news for developers of next-generation materials for use in biotechnology, nanotechnology and other areas of cutting-edge science where more rational design input from computer models is needed.

For example, computer models can simulate conditions that are not easy to recreate in the laboratory, or to reveal the properties of materials not yet synthesised thereby reducing costly 'real world' development time. But they are only as good as the mathematical assumptions upon which they are based. Most current computer models, for example, cannot account for the fact that electrons move around, and are influenced by their surroundings. This complex response of electrons at the atomic scale can influence exploitable material properties and phenomena relevant to microelectronics and biological binding events.

The new approach, reported in Physical Review B and demonstrated for the case of solid Xenon, addresses the complexities of electronic responses in a unified framework leading to the prospect of applications to much larger systems.

For more technical information about this research, please see the paper, which was recently published in Physical Review B.

####

About National Physical Laboratory
As the UK’s National Measurement Institute, NPL’s mission is:

* Excellence in science
* Increased exploitation of that science to boost UK competitiveness and quality of life
* Integrity and independence as a national asset
* Enhanced international standing

For more information, please click here

Contacts:
Prof Jason Crain
Team Research & International

Phone +44 20 8943 6107

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download Physical Review B. paper

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Laboratories

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

Energy Department Awards New Contract to Manage and Operate Brookhaven National Laboratory November 12th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Research partnerships

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Quantum nanoscience

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

On-demand conductivity for graphene nanoribbons: Physicists from Uzbekistan and Germany have devised a theoretical model to tune the conductivity of graphene zigzag nanoribbons using ultra-short pulses November 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE