Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microwave fridges and nano diving boards

Abstract:
NPL scientists are paving the way for highly accurate measurement at the nano-scale and beyond, by being the first team in the world to develop a tiny microwave-powered room-temperature fridge.

Microwave fridges and nano diving boards

UK | Posted on October 8th, 2009

This microwave 'fridge' is unlike the one in your kitchen. Rather than chilling pints of milk, it cools tiny devices called 'micro' or 'nano-scale mechanical resonators' to a decidedly frosty -170 ļC. It is important to cool down these devices, which look and behave like tiny diving boards (the simplest type of mechanical resonator, with a well-defined resonant frequency, like a tuning fork), so that they can be measured accurately.

Heat is a killer when trying to make an accurate measurement. Any material that is warmer than absolute zero (-273 ļC) will have atoms moving around inside it, and this makes it very difficult to measure accurately (just as it would be very difficult to weigh a person who was jumping around on the scales).

Now imagine how much easier it would be to weigh the person if they were standing still - this is effectively what NPL has achieved. We have developed a technique that selectively cools down just the property of a sample that needs to be measured. This selective cooling saves an enormous amount of energy, as it means you don't have to waste energy cooling an entire sample when you are only interested in cooling and measuring a tiny fraction of it.

This technique will be of great use in nano-scale and quantum physics as it allows scientists to detect tiny changes in physical factors such as mass, force and displacement by measuring accurately changes in the resonant frequency of the diving board. This means it can be used in applications where highly sensitive detection is needed, such as bio-analytical screening for viruses (by catching a virus on the diving board!). In the longer term this technique could lead to development of even more sensitive 'quantum' diving boards which could be used to examine the really big questions of quantum physics, such as "At what scale do quantum effects break down?".

For more information on this research read 'Excitation, detection, and passive cooling of a micromechanical cantilever using near-field of a microwave resonator', published in the journal Applied Physics Letters 95, 113501 (2009) doi:10.1063/1.3224912 on 16 September 2009.

####

About National Physical Laboratory
As the UKís National Measurement Institute, NPLís mission is:

* Excellence in science
* Increased exploitation of that science to boost UK competitiveness and quality of life
* Integrity and independence as a national asset
* Enhanced international standing

For more information, please click here

Contacts:
Dr Ling Hao
Team Time Quantum and Electromagnetics

Phone +44 20 8943 6296

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Laboratories

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Quantum nanoscience

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project