Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Death by Light

Abstract:
Nanoparticles as agents for the photodynamic killing of antibiotic-resistant bacteria

Death by Light

Germany | Posted on October 7th, 2009

The increasing antibiotic resistance of bacteria is a serious problem of our time. Hospital germs in particular have developed strains against which practically every current antibiotic is ineffective. In the battle against resistant microbes, a team at the University of Münster (Germany) is now pursuing a new approach involving photodynamic therapy, which is a technique that is already being used in the treatment of certain forms of cancer and macular degeneration. Upon irradiation with light, an agent produces oxygen in a special activated form that is highly toxic to cells. As the researchers led by Cristian A. Strassert and Luisa De Cola report in the journal Angewandte Chemie, they would like to use specially developed nanomaterials that bind specifically to bacterial cells to mark them and kill them under irradiation.

The researchers use nanoparticles made of a special porous material (zeolite L). The particles are modified so they carry a coating of amino groups. These bind preferentially to the surfaces of bacterial cells by means of electrostatic attraction and hydrogen bonds. The researchers put a green fluorescent dye into the channels of the mineral, making the bacteria visible under a fluorescence microscope. The actual "weapons" are photosensitizers anchored on the surface of the nanoparticles. When these molecules are irradiated with light of the right wavelength, they absorb the light energy and transfer it to oxygen molecules found in the surroundings, for example in infected tissue. The oxygen is excited and enters into what is known as the singlet state, in which it is highly reactive and attacks biomolecules - but only in the immediate area in which the singlet oxygen was generated. In this case, the location is right on the bacterial cell where the mineral particle is bound.

The scientists tested their new light-activated killer particles on antibiotic-resistant cultures of E. coli bacteria. After about two hours of irradiation, the bacteria were almost completely killed off. The team achieved comparable results with a strain of resistant gonococci. Furthermore, the researchers from Münster are also considering this material for the treatment of skin cancer. In this case, the tumor cells could be destroyed upon targeted irradiation with red light.

Author: Luisa De Cola, Westfälische Wilhelms-Universität Münster (Germany),
www.uni-muenster.de/Physik.PI/DeCola/ldc.html

Title: Photoactive Hybrid Nanomaterial for Targeting, Labeling, and Killing Antibiotic-Resistant Bacteria

Angewandte Chemie International Edition 2029, 68, No. 42, 7928-7931, doi: 10.1002/anie.200902837

####

For more information, please click here

Contacts:
Editorial office:
or Amy Molnar (US): or Jennifer Beal (UK): or Alina Boey (Asia):

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Possible Futures

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Nanobiotechnology

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Determination of Critical Force, Time for Manipulation of Biological Nanoparticles January 7th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE