Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Death by Light

Abstract:
Nanoparticles as agents for the photodynamic killing of antibiotic-resistant bacteria

Death by Light

Germany | Posted on October 7th, 2009

The increasing antibiotic resistance of bacteria is a serious problem of our time. Hospital germs in particular have developed strains against which practically every current antibiotic is ineffective. In the battle against resistant microbes, a team at the University of Münster (Germany) is now pursuing a new approach involving photodynamic therapy, which is a technique that is already being used in the treatment of certain forms of cancer and macular degeneration. Upon irradiation with light, an agent produces oxygen in a special activated form that is highly toxic to cells. As the researchers led by Cristian A. Strassert and Luisa De Cola report in the journal Angewandte Chemie, they would like to use specially developed nanomaterials that bind specifically to bacterial cells to mark them and kill them under irradiation.

The researchers use nanoparticles made of a special porous material (zeolite L). The particles are modified so they carry a coating of amino groups. These bind preferentially to the surfaces of bacterial cells by means of electrostatic attraction and hydrogen bonds. The researchers put a green fluorescent dye into the channels of the mineral, making the bacteria visible under a fluorescence microscope. The actual "weapons" are photosensitizers anchored on the surface of the nanoparticles. When these molecules are irradiated with light of the right wavelength, they absorb the light energy and transfer it to oxygen molecules found in the surroundings, for example in infected tissue. The oxygen is excited and enters into what is known as the singlet state, in which it is highly reactive and attacks biomolecules - but only in the immediate area in which the singlet oxygen was generated. In this case, the location is right on the bacterial cell where the mineral particle is bound.

The scientists tested their new light-activated killer particles on antibiotic-resistant cultures of E. coli bacteria. After about two hours of irradiation, the bacteria were almost completely killed off. The team achieved comparable results with a strain of resistant gonococci. Furthermore, the researchers from Münster are also considering this material for the treatment of skin cancer. In this case, the tumor cells could be destroyed upon targeted irradiation with red light.

Author: Luisa De Cola, Westfälische Wilhelms-Universität Münster (Germany),
www.uni-muenster.de/Physik.PI/DeCola/ldc.html

Title: Photoactive Hybrid Nanomaterial for Targeting, Labeling, and Killing Antibiotic-Resistant Bacteria

Angewandte Chemie International Edition 2029, 68, No. 42, 7928-7931, doi: 10.1002/anie.200902837

####

For more information, please click here

Contacts:
Editorial office:
or Amy Molnar (US): or Jennifer Beal (UK): or Alina Boey (Asia):

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Possible Futures

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Announcements

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Nanobiotechnology

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic