Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > To peer inside a living cell

An electron microscope image of a butterfly's wings. 
Graphic: Christine Daniloff; electron micrograph image courtesy of the NSF.
An electron microscope image of a butterfly's wings. Graphic: Christine Daniloff; electron micrograph image courtesy of the NSF.

Abstract:
Quantum mechanics could help build ultra-high-resolution electron microscopes that won't destroy living cells, according to MIT electrical engineers.

To peer inside a living cell

Cambridge, MA | Posted on October 7th, 2009

Electron microscopes are the most powerful type of microscope, capable of distinguishing even individual atoms. However, these microscopes cannot be used to image living cells because the electrons destroy the samples.

Now, MIT assistant professor Mehmet Fatih Yanik and his student, William Putnam, propose a new scheme that can overcome this limitation by using a quantum mechanical measurement technique that allows electrons to sense objects remotely. Damage would be avoided because the electrons would never actually hit the imaged objects.

Such a non-invasive electron microscope could shed light on fundamental questions about life and matter, allowing researchers to observe molecules inside a living cell without disturbing them. Yanik and Putnam report their new approach in the October issue of Physical Review A — Rapid Communications.

If successful, such microscopes would surmount what Nobel laureate Dennis Gabor concluded in 1956 was the fundamental limitation of electron microscopy: "the destruction of the object by the exploring agent."

Electron flow

Electron microscopes use a particle beam of electrons, instead of light, to image specimens. Resolution of electron microscope images ranges from 0.2 to 10 nanometers — 10 to 1,000 times greater than a traditional light microscope. Electron microscopes can also magnify samples up to two million times, while light microscopes are limited to 2,000 times.

However, biologists have been unable to unleash the high power of electron microscopes on living specimens, because of the destructive power of the electrons.

The radiation dose received by a specimen during electron microscope imaging is comparable to the irradiation from a 10-megaton hydrogen bomb exploded about 30 meters away. When exposed to such energetic electron beams, biological specimens experience rapid breakdown, modification of chemical bonds, or other structural damages.

Although there exist special chambers to keep biological samples in a watery environment within the high vacuum required for electron microscopes, chemical preservation or freezing, which kill cells, is still required before biological samples can be viewed with existing electron microscopes.

In the proposed quantum mechanical setup, electrons would not directly strike the object being imaged. Instead, an electron would flow around one of two rings, arranged one above the other. The rings would be close enough together that the electron could hop easily between them. However, if an object (such as a cell) were placed between the rings, it would prevent the electron from hopping, and the electron would be trapped in one ring.

This setup would scan one "pixel" of the specimen at a time, putting them all together to create the full image. Whenever the electron was trapped, the system would know that there was a dark pixel in that spot.

Though technical challenges would need to be overcome (such as preventing the imaging electron from interacting with electrons of the metals in the microscope), Yanik believes that eventually such a microscope could achieve a few nanometers of resolution. That level of resolution would allow scientists to view molecules such as enzymes in action inside living cells, and even single nucleic acids — the building blocks of DNA.

Yanik, the Robert J. Shillman Career Development Assistant Professor of Electrical Engineering, says he expects the work will launch experimental efforts that could lead to a prototype within the next five years.

Charles Lieber, professor of chemistry at Harvard and an expert in nanoscale technology, describes Yanik's proposal as a "highly original and exciting concept for 'noninvasive' high-resolution imaging" using an electron microscope.

"From my perspective, it has the potential to be a breakthrough for those working with sensitive samples, such as biological imaging," Lieber says. "Also, in general terms I find his work intellectually exciting because it is not incremental but takes a quantum (excuse the pun) jump forward through creative thinking."

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
MIT News Room
Phone: 617-253-2700

Fax: 617-258-8762

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Tools

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Renishaw reports on the use of Raman spectroscopy at CNRS Orléans to study materials under extreme conditions March 25th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE