Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel polymer delivers genetic medicine, allows tracking

Researchers at Virginia Tech and at the University of Cincinnati designed novel polymeric beacons capable of delivering plasmid DNA into mammalian cells. This image shows a deconvoluted micrograph of a HeLa cell transfected with DNA-polymer beacon complexes. The DNA is labeled with fluorescein isothiocyanate and appears green in the image. Eu3+ luminescence from the polymeric beacon appears red. Yellow pixels can be qualitatively used to visualize regions of co-localization of DNA and polymer beacon. The DNA and polymer beacon signals are overlaid with the DIC image to show contrast and morphology of the cell (scale bar = 20 micrometers).

Credit: Image provided by Joshua Bryson.
Researchers at Virginia Tech and at the University of Cincinnati designed novel polymeric beacons capable of delivering plasmid DNA into mammalian cells. This image shows a deconvoluted micrograph of a HeLa cell transfected with DNA-polymer beacon complexes. The DNA is labeled with fluorescein isothiocyanate and appears green in the image. Eu3+ luminescence from the polymeric beacon appears red. Yellow pixels can be qualitatively used to visualize regions of co-localization of DNA and polymer beacon. The DNA and polymer beacon signals are overlaid with the DIC image to show contrast and morphology of the cell (scale bar = 20 micrometers).

Credit: Image provided by Joshua Bryson.

Abstract:
Theresa M. Reineke, associate professor of chemistry in the College of Science, and colleagues in her lab at Virginia Tech and at the University of Cincinnati have developed a new molecule that can travel into cells, deliver genetic cargo, and packs a beacon so scientists can follow its movements in living systems.

Novel polymer delivers genetic medicine, allows tracking

Blacksburg, VA | Posted on October 6th, 2009

"My lab has been trying to find a way to deliver genetic-based drugs into cells." said Reineke.

Scientists worldwide are using information from the human genome project as an approach to treat disease. Reineke's focus is cancer and cardiovascular disease. "Traditional drugs are aimed at treating disease at the protein level," she said. "Genetic drugs - such as those that can alter or control gene expression - aim to treat disease at the genetic level and have the added benefit of being more specific for their medicinal target." An example would be a genetic message that would arrest tumor growth.

A challenge has been that DNA and RNA drugs - pieces of genetic code that store information and instructions - cannot diffuse through the cell the way traditional small molecule drugs can. "We needed a vehicle to carry them into cells," said Reineke. One such vehicle has been engineered viruses. Reineke's group has been working on a more elegant solution. Their discovery is the topic of the PNAS article.

The scientists created novel polycations. A polycation is a polymer chain with positive charges, which is not too unusual. DNA itself is a polyanion, a polymer with negative charges. However, the Reineke Group's supramolecule has options. It contains chemistry (oligoethyleneamines) that binds and compacts nucleic acids - pieces of the DNA - into nanoparticles. It also incorporates a group of rare-earth elements known as lanthanides. The repackaged DNA is protected from damage as it travels into the cells and the lanthanides allow visualization of the delivery into cells.

"In our experiments, these delivery beacons provide the ability to track DNA delivery into living cells," said Reineke. "They provide the potential for tracking genetic therapies within the living body," she said.

At the nanometer or cellular scale, the researchers are able to track the polymers using sensitive microscopes, which capture the nanoparticle luminescence. At the sub-millimeter or tissue scale, magnetic resonance imaging (MRI) is used to see where the nanoparticles are going.

"This ability to track the movement and delivery of a gene-based drug provides an opportunity to understand the mechanism of delivery and monitor efficacy in real time, so that we can develop better materials for delivering genetic therapeutics and ultimately better treatments," Reineke said.

The research was published in the October 6, 2009 edition and the September 23 online edition of the Proceedings of the National Academy of Sciences (PNAS), in the article "Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery," by Joshua M. Bryson of Cincinnati, a recent student with the Macromolecules and Interfaces Institute (MII) at Virginia Tech, who received his Ph.D. in organic chemistry in August 2009 and is now principal scientist at Techulon Inc.; Katye M. Fichter, recent biochemistry graduate from the University of Cincinnati now a postdoctoral fellow at Oregon Health and Science University; Wen-Jang Chu, research assistant professor, and Jing-Huei Lee, associate professor, both of the University of Cincinnati Center for Imaging Research; Jing Li, a postdoctoral associate with MII; Louis A. Madsen, assistant professor of chemistry with MII; Patrick M. Mclendon of Cincinnati, a Ph.D. student in chemistry in Reineke's group, and Reineke. An abstract is available at www.pnas.org/content/early/2009/09/23/0904860106.abstract

The research was supported by Reineke's Alfred P. Sloan Research Fellowship and by the Camille Dreyfus Teacher-Scholar Awards Program.

Dr. Reineke has just been awarded the NIH Director's New Innovator Award (nihroadmap.nih.gov/newinnovator/index.asp). Learn more about her research at: www.reinekegroup.org

####

For more information, please click here

Contacts:
Susan Trulove

540-231-5646

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Nanophase to present paper on slurry pH impact at Optics + Photonics conference July 28th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Discoveries

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project