Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC Merced Professor Receives $1.3 Million National Science Foundation Grant

School of Natural Sciences professor David Kelley received a $1.3M grant to improve luminescent solar concentrators.
School of Natural Sciences professor David Kelley received a $1.3M grant to improve luminescent solar concentrators.

Abstract:
David Kelley and colleagues will attempt to improve luminescent solar concentrators, used to channel solar energy

UC Merced Professor Receives $1.3 Million National Science Foundation Grant

Merced, CA | Posted on October 6th, 2009

For years, University of California, Merced, professor David Kelley's research has focused on finding a less expensive method to harness and use solar energy.

While the sun has been used to power small devices such as calculators or landscape lighting, using solar energy on a large-scale basis is costly.

"The technology is good, but it's expensive," said Kelley. "The idea is to make solar energy more practical."

School of Natural Sciences professor Kelley, along with two other UC Merced colleagues, will attempt to do just that by improving existing technology. He received a three-year $1.3 million grant from the National Science Foundation (NSF) to develop luminescent solar concentrators (LSCs) that use materials other than silicon as semiconductors.

For his research, Kelley will attempt to improve a device called a luminescent solar concentrator. These concentrators work by absorbing sunlight across a wide area then re-emitting it onto a small photovoltaic cell. It's less expensive to use luminescent solar concentrators because they don't have moving parts that must track light as the sun moves across the sky.

"UC Merced is pleased that the National Science Foundation recognizes the potential of professor Kelley's work," said Samuel Traina, vice chancellor for research and dean of graduate studies. "Research in this area will contribute significantly to reducing costs associated with solar power generation that could, in turn, lead to wider applications of the technology."

While the sun is an inexhaustible, renewable energy source, using it to produce electricity is expensive for two reasons. First, photovoltaic cells, which convert sunlight into electricity, are made with silicon, an expensive material to use because of the steps needed to remove impurities. Second, many of those expensive solar cells are needed to collect that energy in order to convert it into electricity.

A problem with existing luminescent solar concentrators - made of solar cells, along with glass or plastic and dye molecules that serve to concentrate the light - is that the dyes are organic and don't hold up over time, Kelley explained. Another challenge is that when sunlight bounces around in the plastic, a lot of it gets reabsorbed into the dye molecules and ends up emitted as heat. That energy never makes it to the solar cell.

Kelley, along with professors Valerie Leppert and Boaz Ilan, will attempt to develop new kinds of luminescent solar concentrators, based on nanotechnology. They will develop semiconductor nanorods to use in solar concentrators, replacing organic dyes. The semiconductor nanorods are cylindrical sections of semiconductors, about 1/1000 the diameter of a human hair.

"Our research will develop the physics to understand how these semiconductors can get rid of the problems of self-absorption," Kelley said. "This has the potential to be a transformative technology in solar energy research."

Leppert, an associate professor in the School of Engineering, will use state-of-the-art equipment — such as electron microscopes at UC Merced and at the National Center for Electron Microscopy — to examine the synthetic materials' properties and whether they can be optimally used in a solar concentrator.

Using information provided by Kelley and Leppert, School of Natural Sciences assistant professor Ilan, will use mathematic models to theorize how the solar concentrators will perform with the nanorods.

"The hope is that over the three years, we will be able to develop a semiconductor that will do what we want it to do," Kelley said, "or, we'll have a more clear understanding of why we can't."

Professors Kelley and Ilan are both members of the UC Merced Energy Research Institute (UCMERI). UCMERI is a multidisciplinary institute that develops new and improved renewable and sustainable energy generation and storage technologies.

####

About UC Merced
UCMERI's faculty members include mechanical engineers, materials scientists, physicists, environmental engineers, biochemists, computer scientists and social scientists from the Schools of Engineering, Natural Sciences and Social Sciences, Humanities and Arts.

UCMERI's mission also includes setting the standard for institutional energy efficiency, examining domestic and global energy policy and educating the next generation of energy scholars and practitioners.

For more information, please click here

Copyright © UC Merced

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Energy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Solar/Photovoltaic

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE