Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum mechanics could help build ultra-high-resolution electron microscopes that won't destroy living cells, according to MIT electrical engineers

An electron microscope image of a butterfly's wings.
Graphic: Christine Daniloff; electron micrograph image courtesy of the NSF.
An electron microscope image of a butterfly's wings. Graphic: Christine Daniloff; electron micrograph image courtesy of the NSF.

Abstract:
Electron microscopes are the most powerful type of microscope, capable of distinguishing even individual atoms. However, these microscopes cannot be used to image living cells because the electrons destroy the samples.

Now, MIT assistant professor Mehmet Fatih Yanik and his student, William Putnam, propose a new scheme that can overcome this limitation by using a quantum mechanical measurement technique that allows electrons to sense objects remotely. Damage would be avoided because the electrons would never actually hit the imaged objects.

Quantum mechanics could help build ultra-high-resolution electron microscopes that won't destroy living cells, according to MIT electrical engineers

Cambridge, MA | Posted on October 6th, 2009

uch a non-invasive electron microscope could shed light on fundamental questions about life and matter, allowing researchers to observe molecules inside a living cell without disturbing them. Yanik and Putnam report their new approach in the October issue of Physical Review A — Rapid Communications.

If successful, such microscopes would surmount what Nobel laureate Dennis Gabor concluded in 1956 was the fundamental limitation of electron microscopy: "the destruction of the object by the exploring agent."

Electron flow

Electron microscopes use a particle beam of electrons, instead of light, to image specimens. Resolution of electron microscope images ranges from 0.2 to 10 nanometers — 10 to 1,000 times greater than a traditional light microscope. Electron microscopes can also magnify samples up to two million times, while light microscopes are limited to 2,000 times.

However, biologists have been unable to unleash the high power of electron microscopes on living specimens, because of the destructive power of the electrons.

The radiation dose received by a specimen during electron microscope imaging is comparable to the irradiation from a 10-megaton hydrogen bomb exploded about 30 meters away. When exposed to such energetic electron beams, biological specimens experience rapid breakdown, modification of chemical bonds, or other structural damages.

Although there exist special chambers to keep biological samples in a watery environment within the high vacuum required for electron microscopes, chemical preservation or freezing, which kill cells, is still required before biological samples can be viewed with existing electron microscopes.

In the proposed quantum mechanical setup, electrons would not directly strike the object being imaged. Instead, an electron would flow around one of two rings, arranged one above the other. The rings would be close enough together that the electron could hop easily between them. However, if an object (such as a cell) were placed between the rings, it would prevent the electron from hopping, and the electron would be trapped in one ring.

This setup would scan one "pixel" of the specimen at a time, putting them all together to create the full image. Whenever the electron is trapped, the system would know that there is a dark pixel in that spot.

Though technical challenges would need to be overcome (such as preventing the imaging electron from interacting with electrons of the metals in the microscope), Yanik believes that eventually such a microscope could achieve a few nanometers of resolution. That level of resolution would allow scientists to view molecules such as enzymes in action inside living cells, and even single nucleic acids — the building blocks of DNA.

Yanik, the Robert J. Shillman Career Development Assistant Professor of Electrical Engineering, says he expects the work will launch experimental efforts that could lead to a prototype within the next five years.

Charles Lieber, professor of chemistry at Harvard and an expert in nanoscale technology, describes Yanik's proposal as a "highly original and exciting concept for 'noninvasive' high-resolution imaging" using an electron microscope.

"From my perspective, it has the potential to be a breakthrough for those working with sensitive samples, such as biological imaging," Lieber says. "Also, in general terms I find his work intellectually exciting because it is not incremental but takes a quantum (excuse the pun) jump forward through creative thinking."

####

For more information, please click here

Contacts:
MIT news
77 Massachusetts Avenue
Room 11-400
Cambridge, MA 02139-4307
Tel 617.253.2700
TTY 617.258.9344

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Discoveries

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Tools

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE