Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum mechanics could help build ultra-high-resolution electron microscopes that won't destroy living cells, according to MIT electrical engineers

An electron microscope image of a butterfly's wings.
Graphic: Christine Daniloff; electron micrograph image courtesy of the NSF.
An electron microscope image of a butterfly's wings. Graphic: Christine Daniloff; electron micrograph image courtesy of the NSF.

Abstract:
Electron microscopes are the most powerful type of microscope, capable of distinguishing even individual atoms. However, these microscopes cannot be used to image living cells because the electrons destroy the samples.

Now, MIT assistant professor Mehmet Fatih Yanik and his student, William Putnam, propose a new scheme that can overcome this limitation by using a quantum mechanical measurement technique that allows electrons to sense objects remotely. Damage would be avoided because the electrons would never actually hit the imaged objects.

Quantum mechanics could help build ultra-high-resolution electron microscopes that won't destroy living cells, according to MIT electrical engineers

Cambridge, MA | Posted on October 6th, 2009

uch a non-invasive electron microscope could shed light on fundamental questions about life and matter, allowing researchers to observe molecules inside a living cell without disturbing them. Yanik and Putnam report their new approach in the October issue of Physical Review A — Rapid Communications.

If successful, such microscopes would surmount what Nobel laureate Dennis Gabor concluded in 1956 was the fundamental limitation of electron microscopy: "the destruction of the object by the exploring agent."

Electron flow

Electron microscopes use a particle beam of electrons, instead of light, to image specimens. Resolution of electron microscope images ranges from 0.2 to 10 nanometers — 10 to 1,000 times greater than a traditional light microscope. Electron microscopes can also magnify samples up to two million times, while light microscopes are limited to 2,000 times.

However, biologists have been unable to unleash the high power of electron microscopes on living specimens, because of the destructive power of the electrons.

The radiation dose received by a specimen during electron microscope imaging is comparable to the irradiation from a 10-megaton hydrogen bomb exploded about 30 meters away. When exposed to such energetic electron beams, biological specimens experience rapid breakdown, modification of chemical bonds, or other structural damages.

Although there exist special chambers to keep biological samples in a watery environment within the high vacuum required for electron microscopes, chemical preservation or freezing, which kill cells, is still required before biological samples can be viewed with existing electron microscopes.

In the proposed quantum mechanical setup, electrons would not directly strike the object being imaged. Instead, an electron would flow around one of two rings, arranged one above the other. The rings would be close enough together that the electron could hop easily between them. However, if an object (such as a cell) were placed between the rings, it would prevent the electron from hopping, and the electron would be trapped in one ring.

This setup would scan one "pixel" of the specimen at a time, putting them all together to create the full image. Whenever the electron is trapped, the system would know that there is a dark pixel in that spot.

Though technical challenges would need to be overcome (such as preventing the imaging electron from interacting with electrons of the metals in the microscope), Yanik believes that eventually such a microscope could achieve a few nanometers of resolution. That level of resolution would allow scientists to view molecules such as enzymes in action inside living cells, and even single nucleic acids — the building blocks of DNA.

Yanik, the Robert J. Shillman Career Development Assistant Professor of Electrical Engineering, says he expects the work will launch experimental efforts that could lead to a prototype within the next five years.

Charles Lieber, professor of chemistry at Harvard and an expert in nanoscale technology, describes Yanik's proposal as a "highly original and exciting concept for 'noninvasive' high-resolution imaging" using an electron microscope.

"From my perspective, it has the potential to be a breakthrough for those working with sensitive samples, such as biological imaging," Lieber says. "Also, in general terms I find his work intellectually exciting because it is not incremental but takes a quantum (excuse the pun) jump forward through creative thinking."

####

For more information, please click here

Contacts:
MIT news
77 Massachusetts Avenue
Room 11-400
Cambridge, MA 02139-4307
Tel 617.253.2700
TTY 617.258.9344

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Tools

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE