Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Models begin to unravel how single DNA strands combine

Abstract:
Using computer simulations, a team of University of Wisconsin-Madison researchers has identified some of the pathways through which single complementary strands of DNA interact and combine to form the double helix.

Models begin to unravel how single DNA strands combine

Madison, WI | Posted on October 5th, 2009

Present in the cells of all living organisms, DNA is composed of two intertwined strands and contains the genetic "blueprint" through which all living organisms develop and function. Individual strands consist of nucleotides, which include a base, a sugar and a phosphate moiety.

Understanding hybridization, the process through which single DNA strands combine to form a double helix is fundamental to biology and central to technologies such as DNA microchips or DNA-based nanoscale assembly. The research by the Wisconsin group begins to unravel how DNA strands come together and bind to each other, says Juan J. de Pablo, UW-Madison Howard Curler Distinguished Professor of Chemical and Biological Engineering.

The team published its findings today (Oct. 5) in the Proceedings of the National Academy of Sciences. In addition to senior author de Pablo, the group included David C. Schwartz, a UW-Madison professor of chemistry and genetics, and former postdoctoral research fellow Edward J. Sambriski, now an assistant professor of chemistry at Delaware Valley College in Pennsylvania.

The three drew on detailed molecular DNA models developed by de Pablo's research group to study the reaction pathways through which double-stranded DNA undergo denaturation, where the molecule uncoils and separates into single strands, and hybridization, through which complementary DNA strands bind, or "hybridize." In Watson-Crick base pairing, A (adenine) pairs with T (thymine), while G (guanine) pairs with C (cytosine). Reaction pathways are the trajectories single DNA strands follow to find each other and connect via such complementary pairs.

The researchers studied both random and repetitive base sequences. Random sequences of the four bases - A, T, G and C - contained little or no regular repetition. To the researchers' surprise, a couple of bases located toward the center of the strand associate early in the hybridization process. The moment they find each other, they bind and the entire molecule hybridizes rapidly and in a highly organized manner.

Conversely, in repetitive sequences, the bases alternated regularly, and the group found that these sequences bind through a so-called diffusive process. "The two strands of DNA somehow find each other, they connect to each other in no particular order, and then they slide past each other for a long time until the exact complements find one another in the right order, and then they hybridize," says de Pablo.

Results of the team's study show that DNA hybridization is very sensitive to DNA composition, or sequence. "Contrary to what was thought previously, we found that the actual process by which complementary DNA strands hybridize is very sensitive to the sequence of the molecules," he says.

Knowledge of how the process occurs could enable researchers to more strategically design technologies such as gene chips. For example, says de Pablo, if a researcher wanted to design sequences that bind very rapidly or with high efficiency, he or she could place certain bases in specific locations, so that the hybridization reaction could occur faster or more reliably.

Ultimately, the research could help biologists understand why some hybridization reactions are faster or more robust than others. "One of the really exciting things about this work is that the hybridization reaction between two strands of DNA is really fundamental to life itself," says de Pablo. "It is the basis for much of biology. And it is amazing to me that, until now, we knew little of how this reaction actually proceeds."

The National Science Foundation-funded Nanoscale Science and Engineering Center on Templated Synthesis and Assembly at the Nanoscale at UW-Madison sponsored the research.

####

For more information, please click here

Contacts:
Juan de Pablo

608-262-7727

Renee Meiller

608-262-2481

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Nanobiotechnology

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Drug-delivering nanoparticles seek and destroy elusive cancer stem cells November 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project