Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Models begin to unravel how single DNA strands combine

Abstract:
Using computer simulations, a team of University of Wisconsin-Madison researchers has identified some of the pathways through which single complementary strands of DNA interact and combine to form the double helix.

Models begin to unravel how single DNA strands combine

Madison, WI | Posted on October 5th, 2009

Present in the cells of all living organisms, DNA is composed of two intertwined strands and contains the genetic "blueprint" through which all living organisms develop and function. Individual strands consist of nucleotides, which include a base, a sugar and a phosphate moiety.

Understanding hybridization, the process through which single DNA strands combine to form a double helix is fundamental to biology and central to technologies such as DNA microchips or DNA-based nanoscale assembly. The research by the Wisconsin group begins to unravel how DNA strands come together and bind to each other, says Juan J. de Pablo, UW-Madison Howard Curler Distinguished Professor of Chemical and Biological Engineering.

The team published its findings today (Oct. 5) in the Proceedings of the National Academy of Sciences. In addition to senior author de Pablo, the group included David C. Schwartz, a UW-Madison professor of chemistry and genetics, and former postdoctoral research fellow Edward J. Sambriski, now an assistant professor of chemistry at Delaware Valley College in Pennsylvania.

The three drew on detailed molecular DNA models developed by de Pablo's research group to study the reaction pathways through which double-stranded DNA undergo denaturation, where the molecule uncoils and separates into single strands, and hybridization, through which complementary DNA strands bind, or "hybridize." In Watson-Crick base pairing, A (adenine) pairs with T (thymine), while G (guanine) pairs with C (cytosine). Reaction pathways are the trajectories single DNA strands follow to find each other and connect via such complementary pairs.

The researchers studied both random and repetitive base sequences. Random sequences of the four bases - A, T, G and C - contained little or no regular repetition. To the researchers' surprise, a couple of bases located toward the center of the strand associate early in the hybridization process. The moment they find each other, they bind and the entire molecule hybridizes rapidly and in a highly organized manner.

Conversely, in repetitive sequences, the bases alternated regularly, and the group found that these sequences bind through a so-called diffusive process. "The two strands of DNA somehow find each other, they connect to each other in no particular order, and then they slide past each other for a long time until the exact complements find one another in the right order, and then they hybridize," says de Pablo.

Results of the team's study show that DNA hybridization is very sensitive to DNA composition, or sequence. "Contrary to what was thought previously, we found that the actual process by which complementary DNA strands hybridize is very sensitive to the sequence of the molecules," he says.

Knowledge of how the process occurs could enable researchers to more strategically design technologies such as gene chips. For example, says de Pablo, if a researcher wanted to design sequences that bind very rapidly or with high efficiency, he or she could place certain bases in specific locations, so that the hybridization reaction could occur faster or more reliably.

Ultimately, the research could help biologists understand why some hybridization reactions are faster or more robust than others. "One of the really exciting things about this work is that the hybridization reaction between two strands of DNA is really fundamental to life itself," says de Pablo. "It is the basis for much of biology. And it is amazing to me that, until now, we knew little of how this reaction actually proceeds."

The National Science Foundation-funded Nanoscale Science and Engineering Center on Templated Synthesis and Assembly at the Nanoscale at UW-Madison sponsored the research.

####

For more information, please click here

Contacts:
Juan de Pablo

608-262-7727

Renee Meiller

608-262-2481

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotechnology

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Making spintronic neurons sing in unison November 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project