Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Solar Cell Researcher Explores Nanotech Possibilities: National Science Foundation Grant Aids Quest for Low-Cost, Flexible Solution

A researcher holds a sample of prototyped solar cells. The inset is an electron micrograph of the nanostructures.
A researcher holds a sample of prototyped solar cells. The inset is an electron micrograph of the nanostructures.

Abstract:
A UT Dallas researcher envisions a time soon when plastic sheets of solar cells are inexpensively stamped out in factories and then affixed to cell phones, laptops and other power-hungry mobile devices.

And a new $330,000 grant from the National Science Foundation should help him come closer to realizing that vision.

Solar Cell Researcher Explores Nanotech Possibilities: National Science Foundation Grant Aids Quest for Low-Cost, Flexible Solution

Dallas, TX | Posted on October 5th, 2009

Many researchers are investigating the development of flexible solar cells in hopes of improving efficiency and lowering manufacturing costs, however Walter Hu's novel approach would use nanoimprint lithography to produce precisely nanostructured devices rather than using chemical methods of manufacturing.

Nanoimprinting is an emerging technology that's been used to produce various electronic and optical devices by imprinting the pattern from a mold onto a surface. But Dr. Hu's team is exploring how the thermal imprinting can not only impart a pattern to the solar cell material but also change properties of the material in ways that maximize light absorption, increasing the efficiency of the resulting cells well beyond what anyone has done to date with these so-called organic solar cells.

That requires exploring all of the interrelated properties of the solar cell material's plastic polymer surface (such as crystallinity, molecular orientation, stability and thermal dynamics) and their correlation with geometry, imprint conditions, surface effects and the quantum efficiency of the resulting solar cells.

"Scientifically, we would like to understand - materials-wise, engineering-wise - how we can solve the problem of engineering materials at the nanoscale to improve solar cell performance," said Dr. Hu, an assistant professor of electrical engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas.

Understanding these basic questions is important to developing new methods to improve the power conversion efficiency as well as the stability of next-generation solar cells, he added.

His team is collaborating with J.C. Hummelen at the University of Groningen, Netherlands, who is internationally recognized for the creation of PCBM, a popular nanomaterial for organic solar cells. Dr. Hummelen will customize those materialls to fit the nanoimprint process. Dr. Hu's group also works closely with Anvar Zakhidov, a renowned expert in solar cells at the UT Dallas Nanotech Institute, to study various material systems and device architectures.

Dr. Hu's team is also addressing energy payback, which is the time needed once a solar-cell system is operable to both recover the amount of energy used to manufacture it and offset carbon emissions from that manufacturing.

Conventional silicon-based solar cells are manufacturing-intensive. The energy payback for these systems is two to four years. The organic solar cells his team is developing would have an energy payback that can be measured in a few months.

"The fundamental science of this project is very interesting to us," he said. "Plus it's a great
project for training graduate students to do advanced engineering research."

####

For more information, please click here

Contacts:
David Moore
UT Dallas
(972) 883-4183


Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic