Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Golden Nanotubes Detect Tumor Cells, Map Sentinel Lymph Nodes

http://dx.doi.org/doi:10.1038/nnano.2009.231|View abstract - “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents.”
http://dx.doi.org/doi:10.1038/nnano.2009.231|View abstract - “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents.”

Abstract:
Biomedical researchers at the University of Arkansas in Fayetteville and the University of Arkansas for Medical Sciences (UAMS) in Little Rock have developed a special contrast-imaging agent made of gold-coated carbon nanotubes that is capable of molecular mapping of lymphatic endothelial cells and detecting cancer metastasis in sentinel lymph nodes. The findings from this study, which was led by Jin-Woo Kim, Ph.D., M.S., University of Arkansas, and Vladimir P. Zharov, Ph.D., D.Sc., M.S., UAMS, were published in the journal Nature Nanotechnology.

Golden Nanotubes Detect Tumor Cells, Map Sentinel Lymph Nodes

Bethesda , MD | Posted on September 24th, 2009

Photoacoustic and photothermal methods developed by Dr. Zharov deliver energy, via laser pulses, into biological tissue through interaction of the laser light with carbon nanotubes. When some of the energy is absorbed by the carbon nanotubes and converted into heat, the nanotubes expand and emit sound waves. However, carbon nanotubes have not been previously developed as an imaging agent because of concerns about toxicity.

Dr. Kim's research team addressed the toxicity problem by depositing a thin layer of gold around the carbon nanotubes, enhancing absorption of laser radiation and reducing toxicity. In vitro tests showed only minimal toxicity associated with the gold nanotubes. Compared with existing nanoparticles, the gold nanotubes also exhibited high laser absorption at a miniscule diameter. The gold nanotubes required extremely low laser energy levels for detection, and low concentrations were required for effective diagnostic and therapeutic applications.

In the current study, the investigators coupled their gold nanotubes with an antibody specific to a critical lymphatic-endothelial receptor. This enabled the researchers to map the endothelial cells that line the internal surface of lymphatic vessels. This is important because lymphatic endothelial cells come into direct contact with other cells, such as immune-related cells, tumor cells, and bacteria entering the lymphatic system. The specific receptor, known as LYVE-1, is one of the most widely used markers of lymphatic endothelium.

In one set of experiments, the research team successfully demonstrated the unique ability of the gold nanotubes for integrated diagnosis and therapy at the single-cell level. First, they used photoacoustic spectroscopy to detect gold nanotubes that were binding to tumor cells within sentinel lymph nodes, the first lymph node or group of nodes reached by metastasizing cancer cells from a primary tumor, in mice bearing human tumors. They then switched to photothermal mode, which involved boosting the laser intensity by approximately sixfold, and demonstrated that they were able to destroy those very tumor cells.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE