Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First-ever calculation performed on optical quantum computer chip

A quantum photonic experiment 

Photo by Carmel King
A quantum photonic experiment Photo by Carmel King

Abstract:
A primitive quantum computer that uses single particles of light (photons) whizzing through a silicon chip has performed its first mathematical calculation. This is the first time a calculation has been performed on a photonic chip and it is major step forward in the quest to realise a super-powerful quantum computer.

First-ever calculation performed on optical quantum computer chip

Bristol, UK | Posted on September 4th, 2009

The chip takes four photons that carry the input for the calculation, it then implements a quantum programme (Shor's algorithm) to find the prime factors of 15, and outputs the answer - 3 and 5. The results are reported by a team of physicists and engineers from the University of Bristol in today's issue of Science.

"This task could be done much faster by any school kid," said PhD student, Alberto Politi, who, together with fellow PhD student Jonathan Matthews performed the experiment, "but this is a really important proof-of-principle demonstration."

Finding prime factors may seem like a mathematical abstraction, but it lies at the heart of modern encryption schemes, including those used for secure internet communication. The ability of quantum computers to simulate quantum systems may also prove to be a powerful tool in the development of new materials or pharmaceuticals.

The team from the University of Bristol's newly established Centre for Nanoscience and Quantum Information have spent several years developing devices where photons propagate in silica waveguides — much like in optical fibres — micro-fabricated on a silicon chip.

"This approach results in miniature, high-performance and scalable devices," said Professor Jeremy O'Brien, Director of the Centre for Quantum Photonics, who led the research. "The realisation of a quantum algorithm on a chip is an extremely important step towards an all-optical quantum computer"

"Despite recent advances, the ability to perform even small-scale quantum algorithms has largely been missing," said Matthews. "For the last few years, researchers at the Centre for Quantum Photonics have been working towards building fully functional quantum circuits on a chip to solve this issue," added O'Brien.

The team coupled four photons into and out of the chip using optical fibres. On the chip the photons traveled through silica waveguides that were brought together to form a sequence of quantum logic gates. The output was determined by which waveguides the photons exited the chip in. By detecting the photons at the output of the device they confirmed high-performance operation of the quantum algorithm.

"As well as quantum computing and quantum metrology, ‘on-chip' photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations," said Politi.

O'Brien concurred and added: "The really exciting thing about this result is that it will enable the development of large scale quantum circuits for photons. This opens up all kinds of possibilities".

####

For more information, please click here

Contacts:
Cherry Lewis

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Quantum Computing

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Quantum algorithm could help AI think faster: Researchers in Singapore, Switzerland and the UK present a quantum speed-up for machine learning February 2nd, 2018

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project