Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > First-ever calculation performed on optical quantum computer chip

A quantum photonic experiment 

Photo by Carmel King
A quantum photonic experiment Photo by Carmel King

Abstract:
A primitive quantum computer that uses single particles of light (photons) whizzing through a silicon chip has performed its first mathematical calculation. This is the first time a calculation has been performed on a photonic chip and it is major step forward in the quest to realise a super-powerful quantum computer.

First-ever calculation performed on optical quantum computer chip

Bristol, UK | Posted on September 4th, 2009

The chip takes four photons that carry the input for the calculation, it then implements a quantum programme (Shor's algorithm) to find the prime factors of 15, and outputs the answer - 3 and 5. The results are reported by a team of physicists and engineers from the University of Bristol in today's issue of Science.

"This task could be done much faster by any school kid," said PhD student, Alberto Politi, who, together with fellow PhD student Jonathan Matthews performed the experiment, "but this is a really important proof-of-principle demonstration."

Finding prime factors may seem like a mathematical abstraction, but it lies at the heart of modern encryption schemes, including those used for secure internet communication. The ability of quantum computers to simulate quantum systems may also prove to be a powerful tool in the development of new materials or pharmaceuticals.

The team from the University of Bristol's newly established Centre for Nanoscience and Quantum Information have spent several years developing devices where photons propagate in silica waveguides — much like in optical fibres — micro-fabricated on a silicon chip.

"This approach results in miniature, high-performance and scalable devices," said Professor Jeremy O'Brien, Director of the Centre for Quantum Photonics, who led the research. "The realisation of a quantum algorithm on a chip is an extremely important step towards an all-optical quantum computer"

"Despite recent advances, the ability to perform even small-scale quantum algorithms has largely been missing," said Matthews. "For the last few years, researchers at the Centre for Quantum Photonics have been working towards building fully functional quantum circuits on a chip to solve this issue," added O'Brien.

The team coupled four photons into and out of the chip using optical fibres. On the chip the photons traveled through silica waveguides that were brought together to form a sequence of quantum logic gates. The output was determined by which waveguides the photons exited the chip in. By detecting the photons at the output of the device they confirmed high-performance operation of the quantum algorithm.

"As well as quantum computing and quantum metrology, ‘on-chip' photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations," said Politi.

O'Brien concurred and added: "The really exciting thing about this result is that it will enable the development of large scale quantum circuits for photons. This opens up all kinds of possibilities".

####

For more information, please click here

Contacts:
Cherry Lewis

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Quantum Computing

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Announcements

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE