Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Antibody Replacements Just a "Click" Away (Special Interest Story)

Abstract:
Chemists at the California Institute of Technology (Caltech) and The Scripps Research Institute (SRI) have developed an innovative technique to create cheap but highly stable chemicals that have the potential to take the place of the antibodies used in many standard medical diagnostic tests. James R. Heath, Ph.D., principal investigator of the Nanosystems Biology Cancer Center at Caltech, one of eight Centers of Cancer Nanotechnology Excellence, and K. Barry Sharpless, Ph.D., SRI, and their colleagues describe the new technique in the journal Angewandte Chemie International Edition.

Antibody Replacements Just a "Click" Away (Special Interest Story)

Bethesda , MD | Posted on August 30th, 2009

Last year, Dr. Heath and his colleagues announced the development of the integrated blood-barcode chip, a diagnostic medical device about the size of a microscope slide that can separate and analyze dozens of proteins using just a pinprick of blood. The barcode chip employed antibodies, which are proteins utilized by the immune system to identify, bind to, and remove particular foreign compounds such as bacteria, viruses, and other proteins.

"The thing that limits us in being able to go to, say, 200 proteins in the barcode chip is that the antibodies used to detect the proteins are unstable and expensive," said Dr. Heath. "We have been frustrated with antibodies for a long time, so we wanted to be able to develop antibody equivalents—what we call protein capture agents—that can bind to a particular protein with very high affinity and selectivity and that pass the following test: You put a powder of them in your car trunk in August in Pasadena, and you come back a year later and they still work."

In the new work, Dr. Heath and his colleagues have developed a protocol to quickly and cheaply make such highly stable compounds, which are composed of short chains of amino acids, or peptides. The technique makes use of the "in situ click chemistry" method introduced by Dr. Sharpless in 2001, in which chemicals are created by joining—or "clicking"—smaller subunits together.

To create a capture agent for a particular protein, the scientists devised a stepwise approach in which the first subunit of the capture agent is identified, and then that unit, plus the protein, is used to identify the second subunit, and so on. For the first subunit, a fluorescent label is added to the protein, which then is incubated with a bead-based library of tens of millions of short-chain peptides, representing all the potential building blocks for the capture agent. When one of those peptides binds to the protein of interest, the fluorescent label is visualized on the bead (red, blue, or green, depending on the type of label), allowing the linked protein-peptide complex to be identified.

That first peptide, which is about one-third of the length of the final capture agent the scientists are trying to make, then is isolated, purified, and modified on one end by the addition of a chemical group called an alkyne. This is the anchor peptide, which then is incubated, together with the same protein, with the bead-based library. The bead-based library now contains peptides that have been chemically modified to contain an azide group at one end. The alkyne group on the added peptide can potentially chemically react with the azide group of the library's peptides to create a new peptide that is now two segments long.

However, the reaction can occur only when the second peptide comes into close contact with the first on the surface of the target protein, which means that both must have affinity for that protein; essentially, the protein itself builds an appropriate capture agent. The two-segment-long peptide then is isolated and purified, "and then we modify the end of that with an alkyne and add it back to the library to produce a three-segment peptide, which is long enough to be both selective for and specific to the target protein," Dr. Heath said.

"What Dr. Heath has shown is that in several iterations, a high-affinity ligand for a protein can be created from blocks that do not bind to the protein all that well; the trick is to repeat the in situ screen several times, and the binding improves with every iteration," noted Dr. Sharpless.

"This is about as simple a type of chemistry as you can imagine," said Dr. Heath. The process, he said, makes "trivial" the "Herculean task of finding molecules that bind selectively and with high affinity to particular proteins. I see no technical reason it couldn't replace any antibody."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Iterative in situ click chemistry creates antibody-like protein-capture agents”

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Nanomedicine

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE