Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoflares Light Up Molecules in Live Cells

Abstract:
By combining a gold nanoparticle with a unique family of nucleic acids, researchers at Northwestern University have created a new type of intracellular reporting system that with a flash of light reveals the presence and quantity of a wide variety of biologically important molecules. These so-called nanoflares could provide cancer biologists with a highly sensitive method of tracking complex biochemical processes in real time without interfering with those processes.

Nanoflares Light Up Molecules in Live Cells

Bethesda , MD | Posted on August 29th, 2009

Chad A. Mirkin, Ph.D., principal investigator of the Nanomaterials for Cancer Diagnostics and Therapeutics at the Northwestern University Center of Cancer Nanotechnology Excellence, and his colleagues demonstrated the utility of their nanoflares by developing a real-time assay for intracellular adenosine triphosphate (ATP), one of the key energy sources of cellular metabolism. Current methods for ATP analysis require that a cell be destroyed and provide only an average measurement of ATP levels from large number of cells rather than time- and cell-specific measurements. The researchers reported their findings in the journal Nano Letters.

At the center of the nanoflare is a gold nanoparticle coated with a dense layer of nucleic acid aptamers. Aptamers, which are synthesized in the lab, are molecules designed to mimic antibodies in that they bind tightly to a specific chosen molecule. In this case, the aptamers were designed to bind to ATP as well as to the surface of gold nanoparticles. These aptamers were also equipped with a reporter molecule that is capable of producing a bright fluorescent signal.

The key to the nanoflare's unique signaling ability lies in the fact that gold nanoparticles will quench, or prevent, the reporter molecule from emitting its light signal when the attached aptamer is stuck to the nanoparticle. However, when ATP is present, it causes the aptamer to change shape, releasing it from the nanoparticle and allowing the reporter molecule to fluoresce. The amount of aptamer released from the nanoparticle, and hence the intensity of the fluorescent signal, is directly proportional to the amount of ATP present in a cell.

Cells growing in culture rapidly take up the aptamer-coated nanoparticle and soon begin to fluoresce brightly. Then, when the cells are treated with a drug combination known to cause a cell to use up its ATP stores, the fluorescence begins dimming in a dose-dependent manner. Thanks to well-established methods for developing aptamers that will bind to specific biomolecules, it is likely that nanoflares will become a versatile new tool for use in a variety of intracellular processes.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Aptamer nanoflares for molecular detection in living cells”

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project