Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Safer, Denser Acetylene Storage in an Organic Framework

This closeup image of the HKUST-1 metal-organic framework (MOF), recently obtained by NIST scientists, reveals that copper atoms (green) are exposed to the open air within the MOF’s lattice-like structure. The exposed copper allows the MOF to safely store acetylene (magenta) up to 100 times more densely than current methods.

Credit: Liu, NIST
This closeup image of the HKUST-1 metal-organic framework (MOF), recently obtained by NIST scientists, reveals that copper atoms (green) are exposed to the open air within the MOF’s lattice-like structure. The exposed copper allows the MOF to safely store acetylene (magenta) up to 100 times more densely than current methods. Credit: Liu, NIST

Abstract:
The century-old challenge of transporting acetylene may have been solved in principle by a team of scientists working at the National Institute of Standards and Technology (NIST). A NIST research team has figured out* why a recently discovered material can safely store at low pressure up to 100 times as much of the volatile chemical as can be done with conventional methods.

Safer, Denser Acetylene Storage in an Organic Framework

Gaithersburg, MD | Posted on August 27th, 2009

The team has probed the atomic-level workings of a metal-organic framework (MOF), a lattice-like structure made of copper oxide and benzene, that soaks up acetylene like a sponge. Using tools at the NIST Center for Neutron Research (NCNR), the scientists have shown that exposed copper atoms within the lattice give the MOF its talent at storing acetylene. The findings, according to NCNR physicist Yun Liu, could be of use to the chemical industry in the future.

"This discovery could provide substantial savings in acetylene transportation costs," says Liu, a member of the research team, which also included scientists from the University of Texas at San Antonio.

Acetylene, widely used in decades past for welding and illumination, is now also valuable as a starting point for synthesizing a range of chemicals used in plastics and explosives. In the United States alone, several hundred thousand tons of acetylene are produced every year, but its volatility renders it difficult to transport: It becomes dangerously explosive at about 30 psi (207 kilopascal), only about twice normal atmospheric pressure. To safely store acetylene, storage cylinders have to be filled with both porous material and liquid solvents such as acetone.

The research team used neutron powder diffraction and computer calculations at the NCNR to investigate an MOF called HKUST-1, which has a sponge-like interior in which copper atoms are exposed to the air. The analysis showed that the acetylene attaches to the exposed copper by virtue of weak electrical charges, allowing the MOF to store 201 cubic centimeters of acetylene per gram of lattice at ambient pressure—comparable to the amount of similar chemicals that can be contained within a high pressure storage cylinder.

Liu says the fundamental discovery could also help scientists better understand MOFs, which could be used to store other materials. "More than a thousand of these metal—organic frameworks have been created so far," he says. "We hope our technique will turn out to be a good way to check such materials' properties in advance."

* S. Xiang, W. Zhou, J.M. Gallegos, Y. Liu, and B. Chen. Exceptionally High Acetylene Uptake in a Microporous Metal - Organic Framework With Open Metal Sites. Journal of the American Chemical Society, Aug. 11, 2009, DOI 10.1021/ja904782h.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Chad Boutin

(301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Chemistry

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Possible Futures

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Discoveries

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Industrial

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic