Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > High-Efficiency Solid-State Lighting and Superconductor Research Receives Funding: Energy sciences flourish under DOE grant award

Abstract:
Lower-cost, higher-efficiency lighting and better superconducting materials could result from a pair of grants awarded to Los Alamos National Laboratory researchers.

High-Efficiency Solid-State Lighting and Superconductor Research Receives Funding: Energy sciences flourish under DOE grant award

LOS ALAMOS, NM | Posted on August 26th, 2009

The U.S. Department of Energy's Office of Science, Basic Energy Sciences, recently announced its commitment to fund two Single Investigator and Small Group Research projects at Los Alamos. Each project will be funded for up to three years.

The first project, led by Jennifer Hollingsworth and Han Htoon, will focus on "Giant Nanocrystal Quantum Dots: Controlling Charge Recombination Processes for High-Efficiency Solid-State Lighting." This scientific effort exploits novel nanomaterials—particles hundreds of times smaller than a grain of sand—that have the potential to convert electrical energy to light with 100 percent efficiency.

Although researchers have used nanocrystal quantum dots for light-emitting diodes (LEDs) in other efforts, the materials have serious drawbacks, such as blinking or flickering due to complex physical properties inherent to the materials. Due to the inherent flaws of conventional nanocrystal quantum dots, LEDs made from them have been limited to external quantum efficiencies (EQEs) of only about 2 percent.

Hollingsworth and Htoon have found a way to cover giant nanocrystal quantum dots with a shell of inorganic material that mitigates the inherent flaws of conventional nanocrystal quantum dots. Further development of the technology could result in significantly improved LED lighting systems that are highly efficient, reliable, and cost effective.

The other project, "Towards a Universal Description of Vortex Matter in Superconductors," focuses on understanding vortex physics in superconducting materials. This understanding could enhance the current-carrying capacity of superconductors, which are materials with the ability to conduct electrical current without resistance, generally at extremely cold temperatures.

Principal researcher Leonardo Civale is examining how nanosized imhomogeneities—tiny deviations from uniformity—in the lattice structure of superconducting materials can behave as "pinning centers," trapping current vortices and precluding motions that would dissipate energy and reduce the current-carrying capacity of the superconducting material. By exploring these phenomena in different materials across a broad spectrum of properties, Civale and colleagues expect to develop a unified picture of vortex matter that is valid for all superconductors.

"Both of these Los Alamos National Laboratory research projects illustrate how the Laboratory is using cutting-edge science to address problems of significant importance to the nation," said Terry Wallace, principal associate director for Science, Technology, and Engineering at Los Alamos.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
JAMES E. RICKMAN
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Laboratories

Exploring phosphorene, a promising new material April 29th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Chip Technology

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic