Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > LEGOs Help Researchers Learn What Happens Inside Lab-on-a-Chip Devices

German Drazer, assistant professor of chemical and biomolecular engineering, prepares to use a LEGO board to study the way particles behave in a microfluidic device to re-create microscopic activity taking place inside lab-on-a-chip devices at a scale they can more easily observe.
German Drazer, assistant professor of chemical and biomolecular engineering, prepares to use a LEGO board to study the way particles behave in a microfluidic device to re-create microscopic activity taking place inside lab-on-a-chip devices at a scale they can more easily observe.

Abstract:
Johns Hopkins engineers are using a popular children's toy to help them visualize the behavior of particles, cells and molecules in environments too small to see with the naked eye. These researchers are arranging little LEGO pieces shaped like pegs.


LEGOs Help Researchers Learn What Happens Inside Lab-on-a-Chip Devices

Baltimore, MD | Posted on August 26th, 2009

These lab-on-a-chip devices, also known as microfluidic arrays, are commonly used to sort tiny samples by size, shape or composition, but the minuscule forces at work at such a small magnitude are difficult to measure. To solve this small problem, the Johns Hopkins engineers decided to think big.

Led by Joelle Frechette and German Drazer, both assistant professors of chemical and biomolecular engineering in the Whiting School of Engineering, the team used beads just a few millimeters in diameter, an aquarium filled with goopy glycerol and the LEGO pieces arranged on a LEGO board to unlock mysteries occurring at the micro- or nanoscale level. Their observations could offer clues on how to improve the design and fabrication of lab-on-a-chip technology. Their study concerning this technique was published in the August 14 issue of Physical Review Letters.

The idea for this project comes from the concept of "dimensional analysis," in which a process is studied at a different size and time scale while keeping the governing principles the same.

"Microfluidic arrays are like miniature chemical plants," Frechette says. "One of the key components of these devices is the ability to separate one type of constituent from another. We investigated a microfluidic separation method that we suspected would remain the same when you scale it up from micrometers or nanometers to something as large as the size of billiard balls."

With this goal in mind, Frechette and Drazer constructed an array using cylindrical LEGO pegs stacked two high and arranged in rows and columns on a LEGO board to create a lattice of obstacles. The board was attached to a Plexiglas sheet to improve its stiffness and pressed up against one wall of a Plexiglas tank filled with glycerol. Stainless steel balls ofthree different sizes, as well as plastic balls, were manually released from the top of the array; their paths to the bottom were tracked and timed with a camera.

The entire setup, Drazer said, cost a few hundred dollars and could easily be replicated as a science fair experiment.

Graduate students Manuel Balvin and Tara Iracki, and undergraduate Eunkyung Sohn, all from the Department of Chemical and Biomolecular Engineering, performed multiple trials using each type of bead. They progressively rotated the board, increasing the relative angle between gravity and the columns of the array (that is, altering the forcing angle). In doing so, they saw that the large particles did not move through the array in a diffuse or random manner as their small counterparts usually did in a microfluidic array. Instead, their paths were deterministic, meaning that they could be predicted with precision, Drazer said.

The researchers also noticed that the path followed by the balls was periodic once the balls were in motion and coincided with the direction of the lattice. As the forcing angle increased, some of the balls tended to shift over one, two, three or as many as four pegs before continuing their vertical fall.

"Our experiment shows that if you know one single parameter—a measure of the asymmetry in the motion of a particle around a single obstacle—you can predict the path that particles will follow in a microfluidic array at any forcing angle, simply by doing geometry." Drazer said.

The fact that the balls moved in the same direction inside the array for different forcing angles is referred to as phase locking. If the array were to be scaled down to micro- or nanosize, the researchers said they would expect these phenomena to still be present and even increase depending on the factors such as the unavoidable irregularities of particle size or surface roughness.

"There are forces present between a particle and an obstacle when they get really close to each other which are present whether the system is at the micro- or nanoscale or as large as the LEGO board," Frechette said. "In this separation method, the periodic arrangement of the obstacles allows the small effect of these forces to accumulate, and amplify, which we suspect is the mechanism for particle separation."

This principle could be applied to the design of micro- or nanofluidic arrays, she added, so that they could be fabricated to "sort particles that had a different roughness, different charge or different size. They should follow a different path in an array and could be collected separately."

Phase locking is likely to become less important, Drazer cautioned, as the number of particles in solution becomes more concentrated. "Next," he said, "we have to look at how concentrated your suspension can be before this principle is destroyed by particle-particle interactions."

Both Drazer and Frechette are affiliated faculty members of Johns Hopkins Institute for NanoBioTechnology. The research was funded by grants from the National Science Foundation and the American Chemical Society Petroleum Research Fund.

Journal article reference: "Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices" Manuel Balvin, Eunkyung Sohn, Tara Iracki, German Drazer, and Joelle Frechette, Phys. Rev. Lett. 103, 078301 (2009).

Related links:
German Drazer's Lab Web site: microfluidics.jhu.edu/Home
Joelle Frechette Lab Web site: ww2.jhu.edu/frechette/
Institute for NanoBioTechnology: inbt.jhu.edu

####

About Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

For more information, please click here

Contacts:
MEDIA CONTACT:
Mary Spiro
(410) 516-4802

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Possible Futures

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotechnology

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project