Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bio-enabled, Surface-mediated Approach Produces Nanoparticle Composites

Georgia Tech researcher Eugenia Kharlampieva studies the properties of composite materials containing silk and metallic nanoparticles. (Georgia Tech Photo: Gary Meek)
Georgia Tech researcher Eugenia Kharlampieva studies the properties of composite materials containing silk and metallic nanoparticles. (Georgia Tech Photo: Gary Meek)

Abstract:
Thin Films of Silk Produce and Combine with Metallic Particles

Bio-enabled, Surface-mediated Approach Produces Nanoparticle Composites

Atlanta, GA | Posted on August 20th, 2009

Using thin films of silk as templates, researchers have incorporated inorganic nanoparticles that join with the silk to form strong and flexible composite structures that have unusual optical and mechanical properties. This bio-enabled, surface-mediated approach mimics the growth and assembly processes of natural materials, taking advantage of the ability of biomolecules to chemically reduce metal ions to produce nanoparticles—without harsh processing conditions.

Less than 100 nanometers thick, silk-silver nanoparticle composite films formed in this process can be used as flexible mirrors. The technique could also be used to create films that reflect light in specific wavelengths, anti-microbial coatings, thin film sensors, self-cleaning coatings, catalytic materials and potentially even flexible photovoltaic cells.

"We are taking advantage of biological molecules that have the ability to bind metallic ions of silver or gold from solution," said Vladimir Tsukruk, a professor in the Georgia Tech School of Materials Science and Engineering. "These molecules can create mono-dispersed metallic nanoparticles of consistent sizes under ambient conditions—at room temperature and in a water-based environment without high vacuum or high temperatures."

Sponsored by the Air Force Office of Scientific Research and the Air Force Research Laboratory, the research was described August 19 at the Fall 2009 National Meeting of the American Chemical Society.

The nanoparticles produced range in size from four to six nanometers in diameter, surrounded by a biological shell of between one and two nanometers. The silk template permits good control of the nanoparticle placement, creating a composite with equally dispersed particles that remain separate. The optical properties of the resulting film depend on the nanoparticle material and size.

"This system provides very precise control over nanoparticle sizes," said Eugenia Kharlampieva, a postdoctoral researcher in Tsukruk's laboratory. "We produce well-defined materials without the problem of precipitation, aggregation or formation of large crystals. Since the silk fibroin is mono-dispersed, we can create uniform domains within the template."

Fabrication of the nanocomposites begins by dissolving silk cocoons and making the resulting fibroin water soluble. The silk is then placed onto a silicon substrate using a spin-coating technique that produces multiple layers of thin film that is then patterned into a template using a nanolithography technique.

"Because silk is a protein, we can control the properties of the surface and design different kinds of surfaces," explained Kharlampieva. "This surface-mediated approach is flexible at producing different shapes. We can apply the method to coat any surface we want, including objects of complex shapes."

Next, the silk template is placed in a solution containing ions of gold, silver, or other metal. Over a period of time ranging from hours to days, nanoparticles form within the template. The relatively long growth process, which operates at room temperature and neutral pH in a water-based environment, allows precise control of the particle size and spacing, Tsukruk notes.

"We operate at conditions that are suitable for biological activities," he explained. "No reducing agents are required to produce the particles because the biomolecules serve as reducing agents. We don't add any chemicals that could be toxic to the protein."

Use of these mild processing conditions could reduce the cost of producing the composites and their potential environmental impact. When dried, the resulting silk-nanoparticle film has high tensile strength, high elasticity and toughness.

"Silk is almost as strong as Kevlar, but it can be deformed by 30 percent without breaking," said Tsukruk. "The silk film is very robust, with a complicated structure that you don't find in synthetic materials."

For the future, the researchers plan to use the bio-assisted, surface-mediated technique to produce nanoparticles from other metals. They also hope to combine different types of particles to create new optical and mechanical properties.

"If we combine gold-binding and silver-binding peptides, we can make composites that will include a mixture of gold and silver nanoparticles," said Kharlampieva. "Each particle will have its own properties, and combining them will create more interesting composite materials."

The researchers also hope to find additional applications for the films in such areas as photovoltaics, medical technology and anti-microbial films that utilize the properties of silver nanoparticles.

Beyond Tsukruk and Kharlampieva, the research team has included Dmitry Zimnistky, Maneesh Gupta and Kathryn Bergman of Georgia Tech; David Kaplan of the Department of Biomedical Engineering at Tufts University, and Rajesh Naik of the Materials and Manufacturing Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base.

"Nanomaterials grown under environmentally friendly conditions can be as good as synthetic materials that are produced under harsh conditions," Tsukruk added. "This technique allows us to grow very useful materials under natural conditions."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 19,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Media Relations Contacts
John Toon
404-894-6986


Abby Vogel
404-385-3364


Technical Contact
Vladimir Tsukruk
404-894-6081

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Thin films

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

Detecting defects at the nanoscale will profit solar panel production: Researcher Mohamed Elrawemi develops new technologies for defects in thin films, vital in products as printed electronics and solar panels February 24th, 2015

Extreme-temperature electronics: Futuristic material molybdenum disulfide may find new application for thin-film transistors in extremely high-temperature electronics and sensors February 11th, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Sensors

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Environment

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Industrial

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Nanobiotechnology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Solar/Photovoltaic

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE