Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bio-enabled, Surface-mediated Approach Produces Nanoparticle Composites

Georgia Tech researcher Eugenia Kharlampieva studies the properties of composite materials containing silk and metallic nanoparticles. (Georgia Tech Photo: Gary Meek)
Georgia Tech researcher Eugenia Kharlampieva studies the properties of composite materials containing silk and metallic nanoparticles. (Georgia Tech Photo: Gary Meek)

Abstract:
Thin Films of Silk Produce and Combine with Metallic Particles

Bio-enabled, Surface-mediated Approach Produces Nanoparticle Composites

Atlanta, GA | Posted on August 20th, 2009

Using thin films of silk as templates, researchers have incorporated inorganic nanoparticles that join with the silk to form strong and flexible composite structures that have unusual optical and mechanical properties. This bio-enabled, surface-mediated approach mimics the growth and assembly processes of natural materials, taking advantage of the ability of biomolecules to chemically reduce metal ions to produce nanoparticles—without harsh processing conditions.

Less than 100 nanometers thick, silk-silver nanoparticle composite films formed in this process can be used as flexible mirrors. The technique could also be used to create films that reflect light in specific wavelengths, anti-microbial coatings, thin film sensors, self-cleaning coatings, catalytic materials and potentially even flexible photovoltaic cells.

"We are taking advantage of biological molecules that have the ability to bind metallic ions of silver or gold from solution," said Vladimir Tsukruk, a professor in the Georgia Tech School of Materials Science and Engineering. "These molecules can create mono-dispersed metallic nanoparticles of consistent sizes under ambient conditions—at room temperature and in a water-based environment without high vacuum or high temperatures."

Sponsored by the Air Force Office of Scientific Research and the Air Force Research Laboratory, the research was described August 19 at the Fall 2009 National Meeting of the American Chemical Society.

The nanoparticles produced range in size from four to six nanometers in diameter, surrounded by a biological shell of between one and two nanometers. The silk template permits good control of the nanoparticle placement, creating a composite with equally dispersed particles that remain separate. The optical properties of the resulting film depend on the nanoparticle material and size.

"This system provides very precise control over nanoparticle sizes," said Eugenia Kharlampieva, a postdoctoral researcher in Tsukruk's laboratory. "We produce well-defined materials without the problem of precipitation, aggregation or formation of large crystals. Since the silk fibroin is mono-dispersed, we can create uniform domains within the template."

Fabrication of the nanocomposites begins by dissolving silk cocoons and making the resulting fibroin water soluble. The silk is then placed onto a silicon substrate using a spin-coating technique that produces multiple layers of thin film that is then patterned into a template using a nanolithography technique.

"Because silk is a protein, we can control the properties of the surface and design different kinds of surfaces," explained Kharlampieva. "This surface-mediated approach is flexible at producing different shapes. We can apply the method to coat any surface we want, including objects of complex shapes."

Next, the silk template is placed in a solution containing ions of gold, silver, or other metal. Over a period of time ranging from hours to days, nanoparticles form within the template. The relatively long growth process, which operates at room temperature and neutral pH in a water-based environment, allows precise control of the particle size and spacing, Tsukruk notes.

"We operate at conditions that are suitable for biological activities," he explained. "No reducing agents are required to produce the particles because the biomolecules serve as reducing agents. We don't add any chemicals that could be toxic to the protein."

Use of these mild processing conditions could reduce the cost of producing the composites and their potential environmental impact. When dried, the resulting silk-nanoparticle film has high tensile strength, high elasticity and toughness.

"Silk is almost as strong as Kevlar, but it can be deformed by 30 percent without breaking," said Tsukruk. "The silk film is very robust, with a complicated structure that you don't find in synthetic materials."

For the future, the researchers plan to use the bio-assisted, surface-mediated technique to produce nanoparticles from other metals. They also hope to combine different types of particles to create new optical and mechanical properties.

"If we combine gold-binding and silver-binding peptides, we can make composites that will include a mixture of gold and silver nanoparticles," said Kharlampieva. "Each particle will have its own properties, and combining them will create more interesting composite materials."

The researchers also hope to find additional applications for the films in such areas as photovoltaics, medical technology and anti-microbial films that utilize the properties of silver nanoparticles.

Beyond Tsukruk and Kharlampieva, the research team has included Dmitry Zimnistky, Maneesh Gupta and Kathryn Bergman of Georgia Tech; David Kaplan of the Department of Biomedical Engineering at Tufts University, and Rajesh Naik of the Materials and Manufacturing Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base.

"Nanomaterials grown under environmentally friendly conditions can be as good as synthetic materials that are produced under harsh conditions," Tsukruk added. "This technique allows us to grow very useful materials under natural conditions."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 19,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Media Relations Contacts
John Toon
404-894-6986


Abby Vogel
404-385-3364


Technical Contact
Vladimir Tsukruk
404-894-6081

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Industrial

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project