Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Advance toward an 'electronic tongue' with a taste for sweets

In an advance toward a long-awaited "electronic tongue," a new sensor can detect up to 14 commonly-used sweeteners. The device shows promise for quality control monitoring in the food and beverage industry.

Credit: Kenneth Suslick, Ph.D., University of Illinois at Urbana-Champaign
In an advance toward a long-awaited "electronic tongue," a new sensor can detect up to 14 commonly-used sweeteners. The device shows promise for quality control monitoring in the food and beverage industry.

Credit: Kenneth Suslick, Ph.D., University of Illinois at Urbana-Champaign

Abstract:
In a new approach to an effective "electronic tongue" that mimics human taste, scientists in Illinois are reporting development of a small, inexpensive, lab-on-a-chip sensor that quickly and accurately identifies sweetness — one of the five primary tastes. It can identify with 100 percent accuracy the full sweep of natural and artificial sweet substances, including 14 common sweeteners, using easy-to-read color markers. This sensory "sweet-tooth" shows special promise as a simple quality control test that food processors can use to ensure that soda pop, beer, and other beverages taste great, — with a consistent, predictable flavor. Their study was described here today at the American Chemical Society's 238th National Meeting.

Advance toward an 'electronic tongue' with a taste for sweets

Washington, DC | Posted on August 17th, 2009

The new sensor, which is about the size of a business card, can also identify sweeteners used in solid foods such as cakes, cookies, and chewing gum. In the future, doctors and scientists could use modified versions of the sensor for a wide variety of other chemical-sensing applications ranging from monitoring blood glucose levels in people with diabetes to identifying toxic substances in the environment, the researchers say.

"We take things that smell or taste and convert their chemical properties into a visual image," says study leader Kenneth Suslick, Ph.D., of the University of Illinois at Urbana-Champaign. "This is the first practical "electronic tongue" sensor that you can simply dip into a sample and identify the source of sweetness based on its color."

Researchers have tried for years to develop "electronic tongues" or "electronic noses" that rival or even surpass the sensitivity of the human tongue and nose. But these devices can generally have difficulty distinguishing one chemical flavor from another, particularly in a complex mixture. Those drawbacks limit the practical applications of prior technology.

Suslick's team has spent a decade developing "colorimetric sensor arrays" that may fit the bill. The "lab-on-a-chip" consists of a tough, glass-like container with 16 to 36 tiny printed dye spots, each the diameter of a pencil lead. The chemicals in each spot react with sweet substances in a way that produces a color change. The colors vary with the type of sweetener present, and their intensity varies with the amount of sweetener.

To the scientists' delight, the sensor identified 14 different natural and artificial sweeteners, including sucrose (table sugar), xylitol (used in sugarless chewing gum), sorbitol, aspartame, and saccharin with 100 percent accuracy in 80 different trials.

Many food processors use a test called high-pressure liquid chromatography to measure sweeteners for quality control. But it requires an instrument the size of a desk that costs tens of thousands of dollars and needs a highly trained technician to operate. The process is also relatively slow, taking up to 30 minutes. The new sensor, in contrast, is small, inexpensive, disposable, and produces results in about 2 minutes.

Those minutes can be critical. Suclick noted that the food and beverage industry takes great care to ensure consistent quality of the many products that use sweeteners. At present, when a product's taste falls below specifications, then samples must be taken to the lab for analysis. Meanwhile, the assembly lines continue to whirl, with thousands of packages moving along each minute.

"With this device, manufacturers can fix the problem immediately — on location and in real-time," Suslick says.

Christopher Musto, a doctoral student in Suslick's lab, says it will take more work to develop the technology into a complete electronic tongue. "To be considered a true electronic tongue, the device must detect not just sweet, but sour, salty, bitter, and umami — the five main human tastes," he says. Umami means meaty or savory.

The National Institutes of Health funded the research. An Illinois-based company, iSense, is commercializing the technology. Sung H. Lim also contributed to the research study.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Sensors

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Discoveries

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project