Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Advance toward an 'electronic tongue' with a taste for sweets

In an advance toward a long-awaited "electronic tongue," a new sensor can detect up to 14 commonly-used sweeteners. The device shows promise for quality control monitoring in the food and beverage industry.

Credit: Kenneth Suslick, Ph.D., University of Illinois at Urbana-Champaign
In an advance toward a long-awaited "electronic tongue," a new sensor can detect up to 14 commonly-used sweeteners. The device shows promise for quality control monitoring in the food and beverage industry.

Credit: Kenneth Suslick, Ph.D., University of Illinois at Urbana-Champaign

Abstract:
In a new approach to an effective "electronic tongue" that mimics human taste, scientists in Illinois are reporting development of a small, inexpensive, lab-on-a-chip sensor that quickly and accurately identifies sweetness one of the five primary tastes. It can identify with 100 percent accuracy the full sweep of natural and artificial sweet substances, including 14 common sweeteners, using easy-to-read color markers. This sensory "sweet-tooth" shows special promise as a simple quality control test that food processors can use to ensure that soda pop, beer, and other beverages taste great, with a consistent, predictable flavor. Their study was described here today at the American Chemical Society's 238th National Meeting.

Advance toward an 'electronic tongue' with a taste for sweets

Washington, DC | Posted on August 17th, 2009

The new sensor, which is about the size of a business card, can also identify sweeteners used in solid foods such as cakes, cookies, and chewing gum. In the future, doctors and scientists could use modified versions of the sensor for a wide variety of other chemical-sensing applications ranging from monitoring blood glucose levels in people with diabetes to identifying toxic substances in the environment, the researchers say.

"We take things that smell or taste and convert their chemical properties into a visual image," says study leader Kenneth Suslick, Ph.D., of the University of Illinois at Urbana-Champaign. "This is the first practical "electronic tongue" sensor that you can simply dip into a sample and identify the source of sweetness based on its color."

Researchers have tried for years to develop "electronic tongues" or "electronic noses" that rival or even surpass the sensitivity of the human tongue and nose. But these devices can generally have difficulty distinguishing one chemical flavor from another, particularly in a complex mixture. Those drawbacks limit the practical applications of prior technology.

Suslick's team has spent a decade developing "colorimetric sensor arrays" that may fit the bill. The "lab-on-a-chip" consists of a tough, glass-like container with 16 to 36 tiny printed dye spots, each the diameter of a pencil lead. The chemicals in each spot react with sweet substances in a way that produces a color change. The colors vary with the type of sweetener present, and their intensity varies with the amount of sweetener.

To the scientists' delight, the sensor identified 14 different natural and artificial sweeteners, including sucrose (table sugar), xylitol (used in sugarless chewing gum), sorbitol, aspartame, and saccharin with 100 percent accuracy in 80 different trials.

Many food processors use a test called high-pressure liquid chromatography to measure sweeteners for quality control. But it requires an instrument the size of a desk that costs tens of thousands of dollars and needs a highly trained technician to operate. The process is also relatively slow, taking up to 30 minutes. The new sensor, in contrast, is small, inexpensive, disposable, and produces results in about 2 minutes.

Those minutes can be critical. Suclick noted that the food and beverage industry takes great care to ensure consistent quality of the many products that use sweeteners. At present, when a product's taste falls below specifications, then samples must be taken to the lab for analysis. Meanwhile, the assembly lines continue to whirl, with thousands of packages moving along each minute.

"With this device, manufacturers can fix the problem immediately on location and in real-time," Suslick says.

Christopher Musto, a doctoral student in Suslick's lab, says it will take more work to develop the technology into a complete electronic tongue. "To be considered a true electronic tongue, the device must detect not just sweet, but sour, salty, bitter, and umami the five main human tastes," he says. Umami means meaty or savory.

The National Institutes of Health funded the research. An Illinois-based company, iSense, is commercializing the technology. Sung H. Lim also contributed to the research study.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Govt.-Legislation/Regulation/Funding/Policy

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Sensors

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Discoveries

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project