Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Hunting for engineered nanomaterials in the environment

August 6th, 2009

Hunting for engineered nanomaterials in the environment

Abstract:
Most environmental research related to nanomaterials has focused on their toxicity in idealized lab settings. But researchers are slowly shifting their lab methods to look for real nanomaterials in the environment, which is key for determining which nanomaterials to study, as well as where and how they might cause harm.

Last year, researchers from the Swiss Federal Laboratories for Materials Testing and Research (Empa) demonstrated some early success: they traced titanium dioxide (TiO2) nanoparticles shed from the paint on building exteriors into soils nearby and possibly streams (Environ. Pollut. 2008, DOI 10.1016/j.envpol.2008.08.004). The team used electron microscopy to detect the nanoparticles and bulk chemical analysis to confirm their presence. But finding the nanoparticles in the environment is just one part of the problem.

"The task that we have actually is to separate the particles from the surrounding background," says Frank von der Kammer of the University of Vienna. That's because some nanoparticles occur naturally or are shed from products that take advantage of a material's normal size—or "bulk" form. For example, a large amount of bulk TiO2 has been used for decades as a paint pigment and for other applications. This bulk form can release tagalong nanoparticles. The presence of either type of TiO2 in the environment could throw off measurements of the engineered nanoparticles.

Source:
American Chemical Society

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Preparing for Nano

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Thailand to host NanoThailand 2012 December 18th, 2011

Environment

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Safety-Nanoparticles/Risk management

Nutrition, Safety Key To Consumer Acceptance of Nanotech, Genetic Modification In Foods December 2nd, 2014

Sustainable Nanotechnologies Project November 20th, 2014

A gut reaction November 19th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE