Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The guiding of light: A new metamaterial device steers beams along complex pathways: Boston College discovery bends light around corners, along Eastern seaboard

Boston College researchers report developing a device that can bend light along complex pathways. An illustration shows a simulated electromagnetic wave propagation. Guided by a set of instructions delivered by the device, the wave curves around the profile of the eastern US while behaving as if traveling in a straight line.

Credit: Optics Express
Boston College researchers report developing a device that can bend light along complex pathways. An illustration shows a simulated electromagnetic wave propagation. Guided by a set of instructions delivered by the device, the wave curves around the profile of the eastern US while behaving as if traveling in a straight line.

Credit: Optics Express

Abstract:
Using a composite metamaterial to deliver a complex set of instructions to a beam of light, Boston College physicists have created a device to guide electromagnetic waves around objects such as the corner of a building or the profile of the eastern seaboard.

The guiding of light: A new metamaterial device steers beams along complex pathways: Boston College discovery bends light around corners, along Eastern seaboard

Boston, MA | Posted on August 1st, 2009

As directed by the researchers' novel device, these beams continue to behave as if traveling in a straight line. In one computer simulation, Assistant Professor of Physics Willie J. Padilla and researcher Nathan Landy revealed the device could steer a beam of light along the boundary of the US, stretching from Michigan to Maine, down the seaboard, around Florida and into the Louisiana bayou, the researchers report in the upcoming edition of the journal Optics Express.

The researchers accomplished their feat by developing a much more precise set of instructions, which create a grid-like roadmap capable of twisting and turning a beam of light around objects or space. Their discovery is an extension of earlier metamaterial "cloaking" techniques, which have conjured up images of the Harry Potter character disappearing beneath his invisibility cloak.

Padilla and Landy report developing a space-mapping technique that delivers greater precision and efficiency guiding light along pathways that previously were too complex to sustain - from 90-degree angles to the rugged coastal profile of Maine. Furthermore, they've built this new device using relatively common dielectric materials, such as silicon.

"Our method combines the novel effects of transformational optics with the practicality of dielectric construction," Padilla and Landy report. "We show that our structures are capable of guiding light in an almost arbitrary fashion over an unprecedented range of frequencies."

The discovery builds upon a decade-long revolution in electromagnetics brought about by the emergence of metamaterials. Constructed from artificial composites, metamaterials have exhibited effects such as directing light at a negative index of refraction.

Researchers have combined metamaterials with artificial optical devices - also known as transformational optics - to demonstrate the "invisibility cloak" effect, essentially directing light around a space and effectively masking its existence. In addition, other researchers have used a method known as quasi-conformal mapping and very complex metamaterials to issue a somewhat imprecise set of instructions that create another space-cloaking effect.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Discoveries

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Materials/Metamaterials

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Military

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

No limit yet for carbon nanotube fibers: Rice lab makes case for high-performance carbon nanotube fibers for industry August 17th, 2020

A light bright and tiny: NIST scientists build a better nanoscale LED: New design overcomes long-standing LED efficiency problem -- and can transform into a laser to boot August 14th, 2020

Photonics/Optics/Lasers

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project