Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The guiding of light: A new metamaterial device steers beams along complex pathways: Boston College discovery bends light around corners, along Eastern seaboard

Boston College researchers report developing a device that can bend light along complex pathways. An illustration shows a simulated electromagnetic wave propagation. Guided by a set of instructions delivered by the device, the wave curves around the profile of the eastern US while behaving as if traveling in a straight line.

Credit: Optics Express
Boston College researchers report developing a device that can bend light along complex pathways. An illustration shows a simulated electromagnetic wave propagation. Guided by a set of instructions delivered by the device, the wave curves around the profile of the eastern US while behaving as if traveling in a straight line.

Credit: Optics Express

Abstract:
Using a composite metamaterial to deliver a complex set of instructions to a beam of light, Boston College physicists have created a device to guide electromagnetic waves around objects such as the corner of a building or the profile of the eastern seaboard.

The guiding of light: A new metamaterial device steers beams along complex pathways: Boston College discovery bends light around corners, along Eastern seaboard

Boston, MA | Posted on August 1st, 2009

As directed by the researchers' novel device, these beams continue to behave as if traveling in a straight line. In one computer simulation, Assistant Professor of Physics Willie J. Padilla and researcher Nathan Landy revealed the device could steer a beam of light along the boundary of the US, stretching from Michigan to Maine, down the seaboard, around Florida and into the Louisiana bayou, the researchers report in the upcoming edition of the journal Optics Express.

The researchers accomplished their feat by developing a much more precise set of instructions, which create a grid-like roadmap capable of twisting and turning a beam of light around objects or space. Their discovery is an extension of earlier metamaterial "cloaking" techniques, which have conjured up images of the Harry Potter character disappearing beneath his invisibility cloak.

Padilla and Landy report developing a space-mapping technique that delivers greater precision and efficiency guiding light along pathways that previously were too complex to sustain - from 90-degree angles to the rugged coastal profile of Maine. Furthermore, they've built this new device using relatively common dielectric materials, such as silicon.

"Our method combines the novel effects of transformational optics with the practicality of dielectric construction," Padilla and Landy report. "We show that our structures are capable of guiding light in an almost arbitrary fashion over an unprecedented range of frequencies."

The discovery builds upon a decade-long revolution in electromagnetics brought about by the emergence of metamaterials. Constructed from artificial composites, metamaterials have exhibited effects such as directing light at a negative index of refraction.

Researchers have combined metamaterials with artificial optical devices - also known as transformational optics - to demonstrate the "invisibility cloak" effect, essentially directing light around a space and effectively masking its existence. In addition, other researchers have used a method known as quasi-conformal mapping and very complex metamaterials to issue a somewhat imprecise set of instructions that create another space-cloaking effect.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Discoveries

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Materials/Metamaterials

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Military

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Photonics/Optics/Lasers

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project