Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Membrane Breaks Through Performance Barrier: Rapid, low-energy process creates crystalline films free of debilitating defects

Shown in the image are depictions of (top) a conventionally calcined c-oriented silicalite-1 zeolite membrane and (bottom) an identically oriented membrane that has undergone rapid thermal processing (RTP). Red and green regions in the 3D schematics are indicative of zeolite crystal grains and defects/grain boundaries, respectively. A scanning electron microscopy (SEM) image of the membrane cross-section is shown, as well as representative cross-sectional images collected of dye-saturated membranes via laser scanning confocal microscopy. The schematics and representative data highlight the accessibility and inaccessibility of grain boundaries, respectively, in the conventionally calcined and RTP treated membranes.

Credit: Jungkyu Choi, University of California, Berkeley; Mark A. Snyder, Lehigh University; and Michael Tsapatsis, Univerity of Minnesota
Shown in the image are depictions of (top) a conventionally calcined c-oriented silicalite-1 zeolite membrane and (bottom) an identically oriented membrane that has undergone rapid thermal processing (RTP). Red and green regions in the 3D schematics are indicative of zeolite crystal grains and defects/grain boundaries, respectively. A scanning electron microscopy (SEM) image of the membrane cross-section is shown, as well as representative cross-sectional images collected of dye-saturated membranes via laser scanning confocal microscopy. The schematics and representative data highlight the accessibility and inaccessibility of grain boundaries, respectively, in the conventionally calcined and RTP treated membranes.

Credit: Jungkyu Choi, University of California, Berkeley; Mark A. Snyder, Lehigh University; and Michael Tsapatsis, Univerity of Minnesota

Abstract:
Engineers have developed a new method for creating high-performance membranes from crystal sieves called zeolites; the method could increase the energy efficiency of chemical separations up to 50 times over conventional methods and enable higher production rates.

Membrane Breaks Through Performance Barrier: Rapid, low-energy process creates crystalline films free of debilitating defects

Arlington, VA | Posted on July 31st, 2009

The ability to separate and purify specific molecules in a chemical mixture is essential to chemical manufacturing. Many industrial separations rely on distillation, a process that is easy to design and implement but consumes a lot of energy.

Researchers led by chemical engineer Michael Tsapatsis of the University of Minnesota reported this discovery in the July 31, 2009, issue of Science.

Tsapatsis's team developed a rapid heating treatment to remove structural defects in zeolite membranes that limit their performance, a problem that has plagued the technology for decades.

"Using membranes rather than energy-intensive processes such as distillation and crystallization could have a major impact on industry," said NSF program officer Rosemarie Wesson. This discovery could increase the energy efficiency of producing important chemical solvents such as xylene and renewable biofuels such as ethanol and butanol.

Creating Zeolite Membranes

Researchers create zeolite membranes by growing a film of crystals with small organic ions added to direct the crystal structure and pore size--two zeolite properties that help determine which molecules can pass through the material. Then they slowly heat the zeolite film in a process called calcination to decompose the ions and open the pores.

However, Tsapatsis explained, "This method for creating zeolite films often leaves cracks at the boundaries between grains of zeolite crystals." These defects have prevented zeolite films from being used effectively as membranes, because molecules of unwelcome chemicals that are rejected by the zeolite pores can still penetrate through the membrane defects.

"While it may be possible to correct some of these defects, the repair process is difficult and expensive," Wesson said. Currently zeolite membranes have found use only in specialized, smaller-scale applications, such as the removal of water from alcohols or other solvents.

In an effort to minimize the formation of cracks and other defects, the heating rate during calcination is very gentle, and the process can take as long as 40 hours--typically a material is heated at a rate of 1 degree Celsius per minute up to a temperature between 400 and 500 degrees Celsius, where it is held steadily for several hours before being allowed to slowly cool. Because conventional calcination is time-consuming and energy-intensive, it has been difficult and expensive to produce zeolite membranes on a large scale.

Hotter and Faster

Tsapatsis's team developed a treatment called Rapid Thermal Processing (RTP), a treatment in which zeolite film is heated to 700 degrees Celsius within one minute and kept at that temperature for no more than two minutes. Acting as an annealing method, RTP refines the granular structure of the zeolite crystal film.

When the researchers examined the RTP-treated films, they found no evidence of cracks at grain boundaries. Although they found other types of defects, these don't seem to affect the membrane properties or performance.

In a comparison to conventionally-made zeolite membranes, Tsapatsis said, "We observed a dramatic improvement in the separation performance of the RTP-treated membranes." A second round of RTP treatment improved separation performance even further, to a level on par with current industry separation methods.

Tsapatsis involved several graduate students in this project: Jungkyu Choi, now a postdoctoral fellow at the University of California, Berkeley, performed most of the experiments; Hae-Kwon Jeong, now an assistant professor at Texas A&M University, performed some early RTP treatments while a postdoctoral fellow at the University of Illinois at Urbana-Champaign with engineering professor Richard Masel; and Jared Stoeger, currently a doctorate candidate with Tsapatsis, performed permeation measurements using stainless steel tube supported membranes. Mark Snyder, now an assistant professor at Lehigh University, performed confocal microscopy experiments while a postdoctoral fellow in Tsapatsis's group.

The researchers demonstrated the RTP process on relatively thick (several micrometers) zeolite membranes. Tsapatsis and collaborators are now working towards making zeolite membranes 10 to 100 times thinner to allow molecules to pass through more quickly. They hope to eventually implement RTP treatment with its beneficial effects to these membranes as well.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Cecile Gonzalez
NSF
(703) 292-8538


Joshua A. Chamot
NSF
(703) 292-7730


Ryan Mathre
University of Minnesota News Service
(612) 625-0552


Rhonda Zurn
University of Minnesota Institute of Technology
(612) 626-7959


Program Contacts
Rosemarie D. Wesson
NSF
(703) 292-7070


Principal Investigators
Michael Tsapatsis
University of Minnesota
(612) 626-0920

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Michael Tsapatsis homepage

Related zeolite research

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Chemistry

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

How can you see an atom? (video) April 10th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Materials/Metamaterials

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Combined effort for structural determination April 15th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project