Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Coming Soon: Tuberculosis Detection with a Chip?

Abstract:
Lab on a chip: Highly sensitive detection of bacteria with magnetic nanoparticles and a miniaturized NMR method

Coming Soon: Tuberculosis Detection with a Chip?

Weinheim, Germany | Posted on July 30th, 2009

Many of the new techniques based on nanotechnology that have been developed for faster and more sensitive detection of pathogens fail in day-to-day clinical use because they require complex sample preparation or measurement equipment, or simply cannot keep up with the large sample throughput in a clinic. Researchers working with Ralph Weissleder at Harvard Medical School have now developed a very simple process for the rapid detection of pathogens that requires no further sample preparation. As reported in the journal Angewandte Chemie, this technique is based on magnetic nanoparticles and a nuclear magnetic resonance (NMR) measurement.

For their tests, the researchers used the bacillus Calmette-Guérin (BCG), a mycobacterium named after its developers, which was cultured from bovine tuberculosis bacilli in the early twentieth century. This is a weakened strain that is used as a live vaccine against tuberculosis. In addition, it serves as a model for the true tuberculosis pathogen Mycobacterium tuberculosis for research purposes.

The test is this simple: A sample is incubated in a solution that contains special magnetic nanoparticles. These nanoparticles consist of an iron core surrounded by a shell of ferrite, which is an iron oxide. The researchers attached anti-BCG antibodies to the surfaces of the nanoparticles. If BCG bacteria are present in the sample, the antibodies bind to them, thus equipping them with magnetic particles. The liquid is then introduced through microchannels into the tiny chamber of a microfluidic chip. At the exit of the chamber is a membrane that retains the bacteria while the rest of the solution, including excess magnetic particles, passes through. The bacteria thus become concentrated in the chamber.

The chamber is surrounded by a small coil, which produces the magnetic field required for nuclear magnetic resonance measurements (similar to a clinical MRI scanner). The bacteria, with their attached magnetic particles, influence the behavior of the nuclear spins of the water molecules in the chamber. This can be detected directly on the chip by means of the handheld miniaturized NMR system. It was thus possible to detect 20 bacilli in a sputum sample within 30 minutes.

Author: Ralph Weissleder, Harvard Medical School, Boston (USA), csb.mgh.harvard.edu/weissleder

Title: Ultrasensitive Detection of Bacteria Using Core-Shell Nanoparticles and an NMR-Filter System

Angewandte Chemie International Edition 2009, 48, No. 31, 5657-5660, doi: 10.1002/anie.200901791

####

About Angewandte Chemie
Introduced in 1997, Wiley InterScience® (www.interscience.wiley.com) is a leading international resource for scientific, technical, medical and scholarly content.

In June 2008, Wiley InterScience incorporated the online content formerly hosted on Blackwell Synergy to provide access to over 3 million articles across 1400 journals. This massive archive, combined with some 7000 OnlineBooks and major reference works—plus industry leading databases such as The Cochrane Library, and the acclaimed Current Protocols laboratory manuals—make Wiley InterScience one of the world's premiere resources for advanced research.

For more information, please click here

Contacts:
Ralph Weissleder, Harvard Medical School, Boston (USA), csb.mgh.harvard.edu/weissleder

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Possible Futures

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Nanobiotechnology

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project