Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum dot research could lead to medical advances

Abstract:
Working with atomic-scale particles known as quantum dots, a Missouri University of Science and Technology biologist hopes to develop a new and better way to deliver and monitor proteins, medicine, DNA and other molecules at the cellular level.

Quantum dot research could lead to medical advances

Rolla, MO | Posted on July 24th, 2009

The approach would work much like a virus, but would deliver healing instead of sickness, says Dr. Yue-Wern Huang, associate professor of biological sciences at Missouri S&T. Huang is leading the research effort, which is funded through a $225,000 grant from the National Institutes of Health under the American Recovery and Reinvestment Act.

Huang's research involves constructing tiny vessels of cell-penetrating proteins to transport the quantum dots, along with proteins, medicine or DNA, into the cell and release them. He likens the process to the ancient story of the Trojan Horse, which according to Greek mythology was used to delivered Odysseus and his army into the enemy city of Troy. But in this instance, the vessel is a "protein transduction domain," the cargo consists of biomolecules or other therapeutic agents, and the walled city is the cell.

Essentially, the nontoxic protein transduction domain, or PTD, is derived from a virus that can penetrate the cellular membrane. But instead of spreading sickness, it would spread medicine or DNA.

Quantum dots are fluorescent semiconductor nanocrystals - specks that are only a few nanometers in size - that possess unusual physical and chemical properties, making them attractive as tools for new approaches to medicine. For example, Huang says, the fluorescence of quantum dots does not fade as quickly as that of traditional fluorescent dyes used for tracing or mapping in the body. Moreover, quantum dots have a longer half-life and are more resistant to degradation than traditional fluorescent dyes. Because of these qualities, quantum dots are more effective for detecting cancerous cells and other maladies, Huang says.

"Quantum dots are very photo-stable and they have a very high quantum yield. In other words, you don't need to use very much and it is very easy to detect under the microscope," he says.

Huang and his fellow researchers plan to synthesize cadmium-based fluorescent quantum dots, encapsulated by other elements to render the cadmium harmless, and attach them to protein transduction domain (PTD) materials. The quantum dot/PTD mixture is then combined with the cargo, placed into cell cultures and examined. Though early in the research, Huang says the material populates the cell cultures 10 times faster than a system without PTDs over an hour's time.

According to Huang, this work is unique because it involves the merger of two separate areas of biomedical study - quantum dot research and the PTD delivery system. Before this research, the two disciplines have never been merged, he says.

Huang projects "many potential long-term applications in biomedical areas" to come from this research. They include improvements in medical imaging and monitoring, as well as more efficient delivery of medicines and therapeutic agents at the cellular level and in humans.

Other Missouri S&T researchers working with Huang on the effort are Dr. Jeffrey Winiarz, an assistant professor of chemistry, who is creating the quantum dots, and Dr. Katie Shannon, assistant professor of biological sciences, who is providing bio-imaging expertise.

####

For more information, please click here

Contacts:
Office of Public Relations
1201 N. State St.
105 Campus Support Facility
Rolla, MO 65409-0220
Phone: 573-341-4328
Fax: 573-341-6157

Copyright © Missouri University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum Dots/Rods

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project