Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticle-Based "Chemical Nose" Sniffs Out Cancer Earlier To Improve Treatment Options

Abstract:
Using a "chemical nose" array of nanoparticles and polymers, researchers at the University of Massachusetts Amherst have developed a fundamentally new, more effective way to differentiate not only between healthy and cancerous cells but also between metastatic and nonmetastatic cancer cells. It is a tool that could revolutionize cancer detection and treatment, according to Vincent M. Rotello, Ph.D., M.Phil., and D. Joseph Jerry, Ph.D., M.S., the investigators who led the study.

Nanoparticle-Based "Chemical Nose" Sniffs Out Cancer Earlier To Improve Treatment Options

Bethesda, MD | Posted on July 21st, 2009

Currently, detecting cancer via cell surface biomarkers has taken what is known as the "lock and key" approach. Drawbacks of this method include that foreknowledge of the biomarker is required. Also, as Dr. Rotello explained, a cancer cell often has the same biomarkers on its surface as a healthy cell but in different concentrations—a maddeningly small difference that can be difficult to detect. "You often don't get a big signal for the presence of cancer," he noted. "It's a subtle thing."

He added, "Our new method uses an array of sensors not only to recognize known cancer types but also to signal that abnormal cells are present. That is, the chemical nose can simply tell us something isn't right, like a "check engine" indicator on one's car, although it may never have encountered that type before." Furthermore, the chemical nose can be designed to alert doctors of the most invasive cancer types, those for which early treatment is crucial.

In blinded experiments using four human cancer cell lines (cervical, liver, testes, breast), as well as in three metastatic breast cell lines and normal cells, the new detection technique not only correctly indicated the presence of cancer cells in a sample but also identified primary cancer vs. metastatic disease. An article describing this new chemical nose method of cancer detection appears in the Proceedings of the National Academy of Sciences of the United States of America.

In additional experiments to rule out the possibility that the chemical nose had simply detected individual differences in cells from different donors, the researchers repeated the experiments in skin cells from three groups of cloned BALB/c mice: healthy animals, those with primary cancer, and those with metastatic disease. Once again, it worked. "This result is key," says Dr. Rotello. "It shows that we can differentiate among the three cell types in a single individual using the chemical nose approach."

The investigators designed the new detection system by combining three gold nanoparticles that have special affinity for the surface of chemically abnormal cells plus the polymer para-phenyleneethynylene (PPE). As the check-engine indicator, PPE fluoresces or glows when displaced from the nanoparticle surface.

By adding the PPE-gold nanoparticle construct to human cells incubating in wells on a culture plate, the researchers induced a response called "competitive binding." Cell surfaces bind the nanoparticles, displacing PPE from the surface. This turns on PPE's fluorescent switch. Cells then are identified from the patterns generated by different particle-PPE systems.

Dr. Rotello says the chemical nose approach is so named because it works like a human nose, which is arrayed with hundreds of very selective chemical receptors. These bind with thousands of different chemicals in the air, some more strongly than others, in the endless combinations we encounter. The receptors report instantly to the brain, which recognizes patterns such as, for example, "french fries," or it creates a new smell pattern.

Chemical receptors in the nose and the brain's pattern recognition skills together are incredibly sensitive at detecting subtly different combinations, Dr. Rotello noted. Like a human nose, the chemical version being developed for use in cancer also remembers the patterns experienced, even if only once, and creates a new one when needed.

This work, which was supported in part by the National Cancer Institute, is detailed in the paper "Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays." Investigators from the Georgia Institute of Technology also participated in this study. An abstract of the paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanomedicine

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Nanoparticles at specific temperature stimulate antitumor response: Dartmouth researchers identify precise heat to boost immune system against cancer tumors April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Gold by special delivery intensifies cancer-killing radiation April 13th, 2015

Sensors

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

New Biosensor Increases Possibility to Predict Potential of Heart Diseases April 12th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Nanobiotechnology

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

UAB researchers develop a harmless artificial virus for gene therapy April 8th, 2015

Pavel Levkin Is Granted Heinz Maier-Leibnitz Prize April 8th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE