Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > QuantaSol unveils 28.3% efficient single-junction solar cell World Record

Abstract:
QuantaSol unveils 28.3% efficient single-junction solar cell World record made public at UK's Royal Society Summer Science Exhibition

QuantaSol unveils 28.3% efficient single-junction solar cell World Record

Kingston-upon-Thames UK | Posted on July 21st, 2009

QuantaSol Ltd, a new independent designer and manufacturer of strain-balanced quantum-well solar cells, has developed what it believes to be the most efficient single junction solar cell ever manufactured. Developed in just two years, QuantaSol's single-junction device has been independently tested by Fraunhofer ISE as achieving 28.3% efficiency at greater than 500 suns.

QuantaSol was established in June 2007 as a spin-out of Imperial College London to commercialise the University's solar cell IP and offer devices to concentrator Photovoltaic (PV) systems developers. Imperial will be featuring a QuantaSol device as part of its presence at the Royal Society Summer Exhibition in London this week.

"Our technology is the industry's best kept secret. This is the first time that anyone has successfully combined high efficiency with ease of manufacture, historically a bug-bear of the solar cell industry," said Kevin Arthur, QuantaSol's CEO. "We're now gearing up to provide multi-junction cells of even higher efficiencies as early as Q1 2010."

QuantaSol's approach combines several nanostructures, of two or more different alloys, in order to obtain synthetic crystals that overcome the problems associated with current solar cell designs. It also greatly enhances the photovoltaic conversion efficiency.

The company, which has a development laboratory in Kingston-upon-Thames, Surrey, completed a £2m second funding round last week. It will now concentrate on cutting the cost of ownership of solar energy by moving to multi-junction devices.

####

About QuantaSol
QuantaSol is funded and backed by the Low Carbon Accelerator and Imperial Innovations, and its strain-balanced quantum-well solar cell (SB-QWSC) is believed to be the highest performing single- junction concentrator cell in the world with the potential to enhance multi-junction cells to record efficiencies very soon.

Solar cell manufacturers need to find a crystalline semiconductor material that exhibits the optimum light absorption range, is a good absorber of solar radiation (silicon, for instance, is weak), has essentially the same lattice spacing of commercially available substrates like Gallium Arsenide or Germanium, and can be deposited seamlessly on those substrates to form a unique artificial crystal with no defects or unwanted impurities, using commercially viable crystal-growth technologies. None of the known semiconductor compounds or alloys can meet all these conditions at the same time.

QuantaSol’s approach combines several nanostructures of two or more different alloys in order to obtain synthetic crystals that overcome the problems associated with current solar cell designs and also enhances the photovoltaic conversion efficiency.

For more information, please click here

Contacts:
Sales and technical - Kevin Arthur, QuantaSol
+44 20 8972 8830

Media - Andrew Shephard, EML
+44 20 8408 8000

Copyright © QuantaSol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Possible Futures

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic