Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > QuantaSol unveils 28.3% efficient single-junction solar cell World Record

Abstract:
QuantaSol unveils 28.3% efficient single-junction solar cell World record made public at UK's Royal Society Summer Science Exhibition

QuantaSol unveils 28.3% efficient single-junction solar cell World Record

Kingston-upon-Thames UK | Posted on July 21st, 2009

QuantaSol Ltd, a new independent designer and manufacturer of strain-balanced quantum-well solar cells, has developed what it believes to be the most efficient single junction solar cell ever manufactured. Developed in just two years, QuantaSol's single-junction device has been independently tested by Fraunhofer ISE as achieving 28.3% efficiency at greater than 500 suns.

QuantaSol was established in June 2007 as a spin-out of Imperial College London to commercialise the University's solar cell IP and offer devices to concentrator Photovoltaic (PV) systems developers. Imperial will be featuring a QuantaSol device as part of its presence at the Royal Society Summer Exhibition in London this week.

"Our technology is the industry's best kept secret. This is the first time that anyone has successfully combined high efficiency with ease of manufacture, historically a bug-bear of the solar cell industry," said Kevin Arthur, QuantaSol's CEO. "We're now gearing up to provide multi-junction cells of even higher efficiencies as early as Q1 2010."

QuantaSol's approach combines several nanostructures, of two or more different alloys, in order to obtain synthetic crystals that overcome the problems associated with current solar cell designs. It also greatly enhances the photovoltaic conversion efficiency.

The company, which has a development laboratory in Kingston-upon-Thames, Surrey, completed a £2m second funding round last week. It will now concentrate on cutting the cost of ownership of solar energy by moving to multi-junction devices.

####

About QuantaSol
QuantaSol is funded and backed by the Low Carbon Accelerator and Imperial Innovations, and its strain-balanced quantum-well solar cell (SB-QWSC) is believed to be the highest performing single- junction concentrator cell in the world with the potential to enhance multi-junction cells to record efficiencies very soon.

Solar cell manufacturers need to find a crystalline semiconductor material that exhibits the optimum light absorption range, is a good absorber of solar radiation (silicon, for instance, is weak), has essentially the same lattice spacing of commercially available substrates like Gallium Arsenide or Germanium, and can be deposited seamlessly on those substrates to form a unique artificial crystal with no defects or unwanted impurities, using commercially viable crystal-growth technologies. None of the known semiconductor compounds or alloys can meet all these conditions at the same time.

QuantaSol’s approach combines several nanostructures of two or more different alloys in order to obtain synthetic crystals that overcome the problems associated with current solar cell designs and also enhances the photovoltaic conversion efficiency.

For more information, please click here

Contacts:
Sales and technical - Kevin Arthur, QuantaSol
+44 20 8972 8830

Media - Andrew Shephard, EML
+44 20 8408 8000

Copyright © QuantaSol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Possible Futures

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Chip Technology

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Announcements

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Energy

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic