Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles Explored for Preventing Cell Damage

Sudipta Seal holds a bottle containing billions of ultra-small, engineered nanoceria
Sudipta Seal holds a bottle containing billions of ultra-small, engineered nanoceria

Abstract:
Sudipta Seal is enthralled by nanoparticles, particularly those of a rare earth metal called cerium. The particles are showing potential for a wide range of applications, from medicine to energy.

Nanoparticles Explored for Preventing Cell Damage

Orlando, FL | Posted on July 15th, 2009

Seal is a professor of materials science and engineering at the University of Central Florida (UCF), and several years ago, he and his colleagues engineered nanoparticles of cerium oxide (CeO2), a material long used in ceramics, catalysts, and fuel cells. The novel nanocrystalline form is non-toxic and biocompatible--ideal for medical applications.

Since then, the researchers found that cerium oxide nanoparticles have two additional medical benefits: they behave like an antioxidant, protecting cells from oxidative stress, and they can be fine-tuned to potentially deliver medical treatments directly into cells.

Oxidative Stress = Major Headache

Oxidative stress has been implicated as a cause of arthritis, heart disease, and even aging. It also plays a role in several incurable blinding diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal degeneration.

Oxidative stress occurs when too many reactive oxygen species (ROS) are present. These powerful molecules are generated by exposure to ionizing radiation and by commonplace reduction--oxidation reactions within cells. (Peroxide and free radicals are two examples of ROS.)

Usually, enzymes known as antioxidants protect cells from oxidative stress by disarming ROS and minimizing their toxic effects. But sometimes, the number of ROS overwhelms a biological system, causing damage to proteins, DNA, and other cellular materials.

Engineering Nanoparticles With Antioxidant Powers

Seal and his colleagues--James McGinnis, a vision scientist at the University of Oklahoma Health Sciences Center, Artem Masunov, a theoretical chemist at UCF, and William Self, a molecular and micro-biologist at UCF--engineered special cerium oxide nanoparticles, which they call nanoceria, for tailored biomedical applications.

In a nanocrystalline form, cerium oxide is a powerful antioxidant because its latticework crystal structure has many vacancies that can capture oxygen, and the material has a large surface area. Self showed that nanoceria mimic the activity of superoxide dismutases (SOD), an antioxidant that can stop the deadly chain reactions caused by ROS.

Nanoceria are also able to regenerate their antioxidant abilities. "Due to this catalytic property," explains Seal, "repeated dosing with nanoceria may not be needed, as it is with certain antioxidant vitamins."

In a biological paradox, ROS are actually required for some beneficial cellular reactions. Fortunately, nanoceria do not deactivate all ROS. Rather, says Seal, "they reduce the amount of ROS to a certain low level, thus striking a perfect balance."

Stopping Eye Damage

Because they are bombarded by light and have a very high rate of oxygen metabolism, cells in the retina encounter relatively high numbers of ROS. Seal and his colleagues hypothesized that ROS may represent an "Achilles' heel" of blinding diseases, which can be specifically targeted using cerium oxide nanoparticles.

To test their hypothesis, the researchers used mice whose eyes have retinal defects similar to those found in patients with age-related macular degeneration. They treated some of the mice with nanoceria and then compared the number of lesions that occurred in their retinas. The researchers' results, published in Nature Nanotechnology, indicate that the nanoceria prevented about 85 percent of the damage to the retina.

Through a newly launched company, McGinnis is pursuing the development of nanoceria medical treatments for several causes of vision loss: the genetic eye disease retinitis pigmentosa (RP), age-related macular degeneration, and diabetic retinopathy.

Special Delivery

Seal--and colleagues Masunov, Self, Sanku Mallik of North Dakota State University, and Christopher Reilly of Virginia Tech--are also investigating the use of cerium oxide in drug delivery.

With guidance from Masunov's theoretical calculations, the researchers are optimizing nanoceria surface properties, such as charge, for greater adsorption by bioactive molecules and uptake by cells.

"This nanomaterial is very unique," explains Seal. "Its biological properties depend on how you prepare them, and there are many, many ways to do so."

As reported in ACS Nano, the researchers found that nanoceria with greater positive surface charge were able to bind better to the ligand protein transferrin. Transferrin is over-produced by cancer cells, which therefore have additional transferrin receptors. The researchers found that the transferrin-coated nanoceria would selectively enter cancer cells, demonstrating the potential of nanoceria in targeted treatments.

While the nanoceria themselves may have some therapeutic qualities, the researchers believe it is possible to attach a drug to the nanoceria and treat only diseased cells, unlike many cancer treatments that have dangerous side-effects that harm healthy tissue as well as cancer cells.

Next Steps

Seal and his colleagues are continuing to investigate the chemical properties of cerium oxide and other rare earth metals and oxides, identifying and investigating various forms with potential applications in medicine and energy.

For example, cerium oxide may protect healthy cells from the damaging effects of radiation given as cancer treatments, and it shows promise for treating arthritis, wound healing, spinal cord injuries, and neurodegenerative diseases. In collaboration with researchers at Imperial College London, Seal and his colleagues are also incorporating these nanostructures into bio-scaffolds for tissue engineering and stem cell differentiation.

Because of its catalytic nature, cerium oxide nanoparticles and their hybrids may be used efficiently in methanol-ethanol conversion, in the production of hydrogen from sugarcane, for pollution control, and as an electrolyte in fuel cells. Seal is excited about extending his nanoceria research into these energy-related areas.

"We have just scratched the surface of what nanoceria can do," he says. "There are endless possibilities."

-- Cecile Gonzalez, National Science Foundation

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Sudipta Seal
James McGinnis
Artem Masunov
William Self
Sanku Mallik
Christopher Reilly

Related Institutions/Organizations
University of Central Florida
University of Oklahoma
North Dakota State University
Virginia Tech

Locations
Florida
Oklahoma
North Dakota
Virginia

Related Programs
Environmental Implications of Nanotechnology
www.nsf.gov/funding/pgm_summ.jsp?pims_id=503373

Related Awards
#0708172 NIRT: Engineered therapeutic nanoparticles as catalytic antioxidants

Total Grants
$1,034,000

Related Websites
LiveScience.com: Behind the Scenes: Nanoparticles Explored for Preventing Cell Damage: www.livescience.com/health/090626-bts-nanoparticles.html




####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $6.06 billion, we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

For more information, please click here

Contacts:
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111 , FIRS: (800) 877-8339 | TDD: (800) 281-8749

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Environment

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE