Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Ultracapacitor Maker Graphene Energy Eyes New Funding, Tech Milestone

July 10th, 2009

Ultracapacitor Maker Graphene Energy Eyes New Funding, Tech Milestone

Abstract:
Less than a year has passed since Quercus Trust and 21Ventures threw down $500,000 in seed money for a small Austin, Texas, startup, Graphene Energy, with a big idea for disrupting the energy storage market. The idea: Develop a technology using graphene, a one-atom-thick sheet of carbon, with at least twice the storage capacity of commercially available ultracapacitors — devices that have ultra-fast charge and discharge times, but lag far behind batteries in terms of the amount of energy they can store.

Fast-forward six months, and Graphene Energy has used that seed money to make big strides toward its target of achieving twice the storage capacity — at least in the lab. CEO Dileep Agnihotri told us in an interview today that the startup is on track to reach its goal by year's end. At that point, Agnihotri tells us it expects to raise a new round of investment or secure stimulus funds (the company has applied for grants under ARPA-E and smart grid programs, among others) to help it go into the next phase: taking the technology out of the lab and packaging it into ultracapacitors.

If the company reaches its goal in this time frame, it would be fast work. Back when Graphene Energy first raised funding, it had only demonstrated energy storage capacities that were about on par with commercially available options. But the team has leveraged the resources of founder Rodney Ruoff, a leading researcher in the field of novel carbon materials, and a novel plan to use graphene, which was hailed as the new silicon last year when researchers discovered that electrons could travel up to 100 times faster in graphene than silicon.

While Agnihotri acknowledged that the economic climate is "not very good" for fund-raising, he said Graphene Energy is finding no shortage of interest among venture capitalists. As Agnihotri put it, "Graphene itself is a very exciting material." It's stronger than any other material ever tested (about 200 times the strength of steel), and particularly appealing for energy storage devices — potentially an $877 million market by 2014 — because electricity can flow through sheets of graphene very quickly without scattering. Graphene Energy is eying government grants, Agnihotri said, because "like any startup, I would prefer non-dilutive funds."

Source:
earth2tech.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

VC/Funding/Angel financing/Loans/Leases/Crowdfunding

Harris & Harris Group Issues Letter to Shareholders and Information for Shareholder Call on Tuesday, November 15, 2016 November 14th, 2016

Harris & Harris Group Issues Business Update and Reports Financial Statements as of September 30, 2016 November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

Carbodeon Ltd Oy Closes EUR 1.5 million Funding Round From Straightforward Capital: Carbodeon will accelerate its nanodiamonds business and expand manufacturing capacity August 21st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project