Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanobiotix reports final preclinical safety data: its 'NBTXR3' nanoparticles are designed to be safe and effective treatment for radiosensitive and radioresistant tumors

Abstract:
First-in-man clinical trial on schedule to start by year's end

Nanobiotix reports final preclinical safety data: its 'NBTXR3' nanoparticles are designed to be safe and effective treatment for radiosensitive and radioresistant tumors

PARIS, France | Posted on July 9th, 2009

Nanobiotix, an emerging nanomedicine company, announced today that preclinical follow-up data regarding long-term toxicity evaluation suggests that its patented NBTXR3 nanoparticles are designed to be a safe and effective treatment for radiosensitive and radioresistant tumors. The preclinical studies were performed at NAMSA Biomatech. NAMSA is registered with the CDER and CBER divisions of the FDA.

Nanobiotix is using technology that it calls 'nanoXray therapeutics' to resolve radiation therapy's biggest drawback: destruction of healthy tissue and its subsequent deleterious side effects when a high dose of xray is necessary. The Company believes that nanoXray therapeutics offer a dramatic innovation in cancer therapy, based on a technology that is designed to allow destruction of cancer cells only-a new treatment weapon that could be used alone, or in concert with existing anticancer protocols: chemotherapy, surgery, and immunotherapy. Because NBTXR3 is comprised of crystalline nanoparticles, it does not have deleterious effects on healthy cells, unlike chemotherapy or other systemic anticancer agents.

"Our nanotechnology is designed to allow for the precise destruction of cancer cells via the controlled application of an outside-the-body energy source-in this case, an xray. We have aggressively worked to achieve our goal of completing this preclinical program in order for Nanobiotix to be able to start the first-in-man clinical trial by the end of this year. We are highly encouraged by these latest results, with confirmation of good tolerance and negligible toxicity observed in animals," said Laurent Lévy, Ph.D., President and CEOof Nanobiotix and Co-President of the French Technology Platform on Nanotechnology (FTPN).

"These preclinical results strongly suggest that NBTXR3 activated by ionizing radiation may represent a safe, solid-tumor treatment option capable of enhancing existing therapeutic options. These data also suggest that NBTXR3-based treatment can be used for patients with kidney or liver dysfunctions, resulting in potentially better clinical benefit in specific populations where pharmaceuticals and biologicals cannot be used," added Elsa Borghi, M.D., Chief Medical Officer for Nanobiotix.

One in four deaths in the United States is from cancer, making it the second-leading cause of death after heart attack. Radiation therapy-also called radiotherapy, xray, or irradiation-is typically used to kill cancer cells and shrink tumors. Radiation therapy injures or destroys cells in the area being treated by damaging their genetic material, making it impossible for these cells to continue to grow and divide. The goal of radiation therapy is to damage as many cancer cells as possible, while limiting harm to nearby healthy tissue. About half of all cancer patients receive some type of radiation therapy, which may be used alone or in combination with other cancer treatments, such as chemotherapy or surgery. Radiation therapy may be used to treat almost every type of solid tumor.

NBTXR3 is a suspension of inert crystalline nanoparticles of hafnium oxide with a simple coating that is formulated in water for injection. These nanoparticles have a simple composition: the hafnium oxide core represent the therapeutic source, but only when its electrons are excited by the application of an external beam of xray. Of note: the crystalline structure of the nanoparticles prevents metabolization by living organisms. NBTXR3 works according to an "on-off" activity status: When the nanoparticles are not activated, they do not have any effect because they are inert. Under standard external beam xray activation, xrays are absorbed by NBTXR3 nanoparticles exactly as ionizing radiations are absorbed by water molecules, leading to emission of electrons losing energy and the subsequent creation of free radicals. In both cases, xray energy will generate electrons with kinetic energy that will be released into the medium and will generate free radicals. The nanoparticles do not react directly with any biological recipient cell and tissue.

About the NBTXR3 Toxicology Evaluation Follow-Up Data
Two years ago, Nanobiotix commenced a large safety assessment program in animals to acquire knowledge about NBTXR3's biodistribution, excretion and potential toxicology effects in healthy and tumor-bearing animals. Despite the intended use of NBTXR3 as a local injection directly into a tumor, NBTXR3 was tested in animals as a systemic injection in the vein in order to mimic a clinical situation of accidental and massive passage of NBTXR3 nanoparticles into the bloodstream during the procedure of intratumor injection. Preclinical tolerance studies in terms of animal survival, behavior and pathological assessment indicated capture by the reticulo-endothelial system and negligible toxicity, even for dose-maximization situations in which NBTXR3 was injected by intravenous route on five consecutive days. Results suggested absence of any indolent disease characteristics in male and female animals. Excretion studies following intravenous administration showed identical data for male and female animals, with NBTXR3 very slowly eliminated by feces per plan and no presence of NBTXR3 in urine. Regarding local injection tolerance, there was no evidence of irritant potential at the intramuscular site. For the systemic administrations, NBTXR3 nanoparticles underwent phagocytosis mainly in the mononuclear phagocyte system. Therefore, they were observed in liver, spleen, small intestine and lymph nodes. There was no evidence of blood/brain barrier rupture. Also, no presence of inflammation or degenerative change was found in any of the 39 evaluated tissues at any time point. Hematology and biochemistry were exactly equivalent to those values observed in animal controls.

####

About Nanobiotix
Nanobiotix is an emerging nanomedicine company combining dramatic advances in nanotechnology and molecular biology to develop nanoXray™- a technology platform that is expected to be turned 'on' and 'off' outside the body to selectively treat a variety of cancers safely and noninvasively. Use of nanoXray is intended to resolve radiation therapy's biggest drawback: destruction of healthy tissue and its subsequent deleterious side effects when a high dose of xray is necessary. The core of a nanoXray nanoparticle is an inactive and inert substance-not drugs-that can be activated to locally (intratumor) increase the dose of xray, which is then expected to lead to higher efficiency. After nanoXray nanoparticles accumulate in the target tissues, a standard xray is applied that is intended to generate a local therapeutic effect, designed to destroy only the targeted tumor cells. This mechanism suggests total control of the intended therapeutic effect.

Contacts:
Ronald Trahan
APR
Ronald Trahan Associates Inc.
508-359-4005, x108

Copyright © Nanobiotix

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Nanomedicine

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Announcements

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Safety-Nanoparticles/Risk management

Warning to DIY enthusiasts & construction workers as dangerous dust emissions August 19th, 2015

Bionic liver micro-organs explain off-target toxicity of acetaminophen (Tylenol): Israeli-German partnership aims to replace animal experiments with advanced liver-on-chip devices August 17th, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic