Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > TSMC Joins the CEA-Leti Program on Multiple E-Beam Lithography for IC Manufacturing

Abstract:
TSMC (TWSE: 2330; NYSE: TSM) and CEA-Leti, the leading French semiconductor research institute, signed an agreement today in which TSMC will join the new industrial program IMAGINE, led by CEA-Leti, on maskless lithography for IC manufacturing. Intended to operate for three years, this program allows companies to assess a maskless lithography infrastructure for IC manufacturing and use MAPPER Technology as a solution towards high throughput. It covers a global approach, including tool assessment, patterning and process integration, data handling, prototyping and cost analysis.

TSMC Joins the CEA-Leti Program on Multiple E-Beam Lithography for IC Manufacturing

HSINCHU, Taiwan and GRENOBLE, France | Posted on July 5th, 2009

"TSMC is always pushing for cost-effective lithography and the development of maskless lithography is one of the potential solutions. We have already announced the joint steps with Mapper to explore multiple e-beam lithography for IC manufacturing at 22 nanometer node and beyond," said TSMC's VP of R&D, Jack Sun. "By joining the IMAGINE program at CEA-Leti, we intend to federate the semiconductor industry around this technology and accelerate its development and introduction for IC manufacturing."

"Lithography is a major challenge for the industry. A maskless approach can offer flexibility and gain in cost of ownership. Together with MAPPER, we see a route towards industrial throughput," said Leti's CEO, Laurent Malier. "Having TSMC on board the IMAGINE program is pivotal and will strengthen the assessment towards manufacturing. It shows the commitment in the technology from the industry and will take maskless lithography to the next step in the development that is required to make it a viable solution for 22-nm manufacturing."

####

About TSMC
TSMC is the world's largest dedicated semiconductor foundry, providing the industry's leading process technology and the foundry's largest portfolio of process-proven libraries, IP, design tools and reference flows. The Company's total managed capacity in 2008 exceeded 9 million 8-inch equivalent wafers, including capacity from two advanced 12-inch - GIGAFABs(TM), four eight-inch fabs, one six-inch fab, as well as TSMC's wholly owned subsidiaries, WaferTech and TSMC (China), and its joint venture fab, SSMC. TSMC is the first foundry to provide 40nm production capabilities. Its corporate headquarters are in Hsinchu, Taiwan.

About CEA-Leti:

CEA is a French Research and Technology Organisation, with activities in three main areas: Energy, Technologies for Information and Healthcare, and Defence and Security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and Microsystems (MEMS) are at the core of its activities. As a major player in MINATEC excellence centre, Leti operates 8,000 m(2) state-of-the-art clean rooms, on 24/7 mode, on 200 mm and 300 mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on Intellectual Property and owns more than 1,400 patent families. In 2008, contractual income covered more than 75% of its budget worth 205 M¿. For more information, visit www.leti.fr.

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Chip Technology

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Industrial

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

Printing/Lithography/Inkjet/Inks

New technology using silver may hold key to electronics advances July 2nd, 2015

New conductive ink for electronic apparel June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities June 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project