Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > KAIST develops conducting nanowire

Abstract:
Prof. Park Chan-beum's team uses peptide self-assembly tech, publishes study in international journal

KAIST develops conducting nanowire

Korea | Posted on June 30th, 2009

A team of Korean researchers has developed conducting polymer nanowire and nanotube material that employ natural peptide self-assembly technology.

The Korea Advanced Institute of Science and Technology (President Suh Nam-pyo) said on June 15 that a team led by Prof. Park Chan-beum at KAIST's department of materials science and researcher Ryu Jung-ki had published their study on the development of conducting polymer nanowire and nanotube material in Angewandte Chemie, a world-renowned chemistry journal.

Peptides or proteins can create three-dimensional structures through the combination of some 20 amino acids. Such structures have the advantage of outstanding physical characters and diverse functions, which were not available in the original materials.

The research team allowed tens of thousands of very simple peptides comprising two amino acids to align on their own to successfully form a long nanowire one one-thousandth the thickness of a single hair. They then coated the structure with polyaniline, a conducting polymer material, to create a Vertically Well-Aligned conducting Nanowire.

Unlike common electric wires, the Vertically Well-Aligned nanowire only conducts electricity on its surface. Prof. Park's team then selectively removed the peptide core section of the conducting nanowire to produce a conducting nanotube consisting purely of polyaniline.

Creating three-dimensional structures through the self-assembly of chemical substances, a process not unlike building with Lego blocks, not only constitutes a fundamental mechanism within all different biological phenomena, but is also widely sought after as one of the key technologies for producing nanomaterials.

Notably, since the peptide the research team used in the study originated from amyloid plaque in a fabric structure, which is closely related with the development of degenerative diseases including Alzheimer's, the study of the self-assembly of peptides is highly important from a medical perspective as well.

If conducting polymer is produced into a nano-sized structure, its electric characteristic is significantly enhanced. Hence, the newly developed conducting nanowire and nanotube will likely find applications in the development of various next-generation solar cells, sensors and chips, and are expected to help boost Korea's science and technology competitiveness in the areas of nano-bio fusion in the future.

Meanwhile, experts say the newly developed technology has already made important contributions to the development of nanomaterials through the creative fusion of nanotechnology and bioscience.

####

About KAIST
The Korea Institute of Science and Technology (KIST) is a multi-disciplinary research institute located in Seoul, South Korea. Founded in 1966, it was the first multi-disciplinary scientific research institute in Korea and has contributed significantly to the economic development of the country, particularly during the years of accelerated growth in the 1970’s and 1980’s. It has a research staff of over 400 scientists involved in basic research in six research divisions.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Lim Eun-hee

Copyright © KAIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Self Assembly

New conductive ink for electronic apparel June 25th, 2015

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor June 24th, 2015

n-tech Research Issues Report on Smart Coatings Market, Free Download Available on Firm’s Website June 24th, 2015

Sweeping lasers snap together nanoscale geometric grids: New technique creates multi-layered, self-assembled grids with fully customizable shapes and compositions June 23rd, 2015

Nanomedicine

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Chivalrous Knight Does Pro Bono June 27th, 2015

Announcements

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Nanobiotechnology

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project