Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > KAIST develops conducting nanowire

Abstract:
Prof. Park Chan-beum's team uses peptide self-assembly tech, publishes study in international journal

KAIST develops conducting nanowire

Korea | Posted on June 30th, 2009

A team of Korean researchers has developed conducting polymer nanowire and nanotube material that employ natural peptide self-assembly technology.

The Korea Advanced Institute of Science and Technology (President Suh Nam-pyo) said on June 15 that a team led by Prof. Park Chan-beum at KAIST's department of materials science and researcher Ryu Jung-ki had published their study on the development of conducting polymer nanowire and nanotube material in Angewandte Chemie, a world-renowned chemistry journal.

Peptides or proteins can create three-dimensional structures through the combination of some 20 amino acids. Such structures have the advantage of outstanding physical characters and diverse functions, which were not available in the original materials.

The research team allowed tens of thousands of very simple peptides comprising two amino acids to align on their own to successfully form a long nanowire one one-thousandth the thickness of a single hair. They then coated the structure with polyaniline, a conducting polymer material, to create a Vertically Well-Aligned conducting Nanowire.

Unlike common electric wires, the Vertically Well-Aligned nanowire only conducts electricity on its surface. Prof. Park's team then selectively removed the peptide core section of the conducting nanowire to produce a conducting nanotube consisting purely of polyaniline.

Creating three-dimensional structures through the self-assembly of chemical substances, a process not unlike building with Lego blocks, not only constitutes a fundamental mechanism within all different biological phenomena, but is also widely sought after as one of the key technologies for producing nanomaterials.

Notably, since the peptide the research team used in the study originated from amyloid plaque in a fabric structure, which is closely related with the development of degenerative diseases including Alzheimer's, the study of the self-assembly of peptides is highly important from a medical perspective as well.

If conducting polymer is produced into a nano-sized structure, its electric characteristic is significantly enhanced. Hence, the newly developed conducting nanowire and nanotube will likely find applications in the development of various next-generation solar cells, sensors and chips, and are expected to help boost Korea's science and technology competitiveness in the areas of nano-bio fusion in the future.

Meanwhile, experts say the newly developed technology has already made important contributions to the development of nanomaterials through the creative fusion of nanotechnology and bioscience.

####

About KAIST
The Korea Institute of Science and Technology (KIST) is a multi-disciplinary research institute located in Seoul, South Korea. Founded in 1966, it was the first multi-disciplinary scientific research institute in Korea and has contributed significantly to the economic development of the country, particularly during the years of accelerated growth in the 1970ís and 1980ís. It has a research staff of over 400 scientists involved in basic research in six research divisions.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Lim Eun-hee

Copyright © KAIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE