Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Integrated optical trap holds particles for on-chip analysis

Abstract:
A new type of optical particle trap can be used to manipulate bacteria, viruses and other particles on a chip as part of an integrated optofluidic platform. The optical trap is the latest innovation from researchers at the Jack Baskin School of Engineering at the University of California, Santa Cruz, who are developing new sensor technology for biomedical analysis and other applications.

Integrated optical trap holds particles for on-chip analysis

Santa Cruz, CA | Posted on June 30th, 2009

"Ultimately, it could have applications for rapid detection of bacteria and viruses in hospitals, for cell sorting in research labs, and for process monitoring in chemical engineering," said Holger Schmidt, professor of electrical engineering and director of the W. M. Keck Center for Nanoscale Optofluidics at UCSC.

The new technique offers the potential to create a smaller, cheaper version of the sophisticated equipment used to perform fluorescence-activated cell sorting (FACS), Schmidt said.

"The capabilities of our optofluidic platform are continuing to grow. We have gone from the detection of single molecules and single viruses to now being able to control the movement of particles," he said.

Schmidt's group has received a $400,000 grant from the National Institutes of Health to explore particle trapping and sorting and other applications of the optofluidics platform. An article describing the optical trap for on-chip particle analysis has been published online by the journal *Lab on a Chip*. First author Sergei Kuhn was a postdoctoral researcher in Schmidt's lab and is now at the Max-Born Institute in Berlin. Coauthors include David Deamer and Philip Measor at UCSC and E. J. Lunt, B. S. Phillips, and A. R. Hawkins of Brigham Young University, where the optofluidic chips are fabricated.

Optical traps and "optical tweezers" use the momentum carried by the photons in a beam of light to exert forces on microscopic objects, enabling researchers to manipulate objects ranging from biological molecules to living cells. Schmidt's group developed a new way to perform optical trapping on a chip-based platform.

The technique relies on an earlier innovation from Schmidt's lab: a hollow-core optical waveguide that can direct a beam of light through a liquid-filled channel on a chip. To trap particles, the researchers used two laser beams at opposite ends of a channel. A particle gets trapped at the point where the forces exerted by the two beams are equal, and the particle can be moved by changing the relative power of the two laser beams.

"We can also use this like an optical leaf blower to push all the particles in a sample to the same spot and increase the concentration," Schmidt said.

"The goal is to control the position and movement of particles through channels on a chip so they can be studied using fluorescence analysis and other optical methods."

####

About UCSC
The Jack Baskin School of Engineering at UCSC prepares technologists--and sponsors technology--for our changing world. Founded in 1997, Baskin Engineering trains students in six future-focused areas of engineering: biotechnology/information technology/nanotechnology; information and communication infrastructure; mathematical and statistical modeling; software and services engineering; system design; and bioengineering. Baskin Engineering faculty conduct industry-leading research that is improving the way the world does business, treats the environment, and nurtures humanity.

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495

Copyright © UCSC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanomedicine

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NREL Scientist Brian Gregg Named AAAS Fellow: Gregg honored for distinguished contributions to the field of organic solar photoconversion January 20th, 2015

Nanobiotechnology

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE