Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale "Fountain Pen" Draws Therapeutic Nanodiamonds

Abstract:
A research team at Northwestern University has developed a tool that can precisely deliver tiny doses of drug-carrying nanomaterials to individual cells. The tool, called the nanofountain probe, functions in two different ways. In one mode, the probe acts like a fountain pen with drug-coated nanodiamonds serving as the ink, allowing researchers to create devices by "writing" with it. The second mode functions as a single-cell syringe, permitting direct injection of biomolecules or chemicals into individual cells. The research was led by Horacio Dante Espinosa, Ph.D., and Dean Ho, Ph.D., and the results appear in the journal Small.

Nanoscale "Fountain Pen" Draws Therapeutic Nanodiamonds

Bethesda, MD | Posted on June 27th, 2009

The nanofountain probe could be used both as a research tool for developing next-generation cancer treatments and as a nanomanufacturing tool to build the implantable drug delivery devices that will administer these treatments. In their current work, the investigators use the nanofountain probe to inject tiny doses of nanodiamonds into both healthy and cancerous cells. This technique will help cancer researchers investigate the efficacy of new drug-nanomaterial systems as they become available.

The group also used the same nanofountain probe to pattern dot arrays of drug-coated nanodiamonds directly on glass substrates. The production of these dot arrays, with dots that can be made smaller than 100 nanometers in diameter, provides the proof of concept by which to manufacture devices that will deliver these nanomaterials within the body. The work addresses two major challenges in the development and clinical application of nanomaterial-mediated drug-delivery schemes: dosage control and high spatial resolution.

In fundamental research and development, biologists are typically constrained to studying the effects of a drug on an entire cell population because it is difficult to deliver them to a single cell. To address this issue, the team used the nanofountain probe to target and inject single cells with a dose of nanodiamonds. "This allows us to deliver a precise dose to one cell and observe its response relative to its neighbors," said Dr. Ho. "This will allow us to investigate the ultimate efficacy of novel treatment strategies via a spectrum of internalization mechanisms."

Beyond the broad research focused on developing these drug-delivery schemes, manufacturing devices to execute the delivery will require the ability to precisely place doses of drug-coated nanomaterials. Dr. Ho and his colleagues previously developed a polymer patch that could be used to deliver chemotherapy drugs locally to sites where cancerous tumors had been removed. This patch is embedded with a layer of drug-coated nanodiamonds, which moderate the release of the drug. The patch is capable of controlled and sustained low levels of release over a period of months, reducing the need for chemotherapy following the removal of a tumor.

"An attractive enhancement will be to use the nanofountain probe to replace the continuous drug-nanodiamond films currently used in these devices with patterned arrays composed of multiple drugs," Dr. Ho explained. "This allows high-fidelity spatial tuning of dosing in intelligent devices for comprehensive treatment." Dr. Espinosa added, "One of the most significant aspects of this work is the nanofountain probe's ability to deliver nanomaterials coated with a broad range of drugs and other biological agents. The injection technique is currently being explored for delivery of a wide variety of bioagents, including DNA, viruses, and other therapeutically relevant materials."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds.”

Related News Press

News and information

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project