Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale "Fountain Pen" Draws Therapeutic Nanodiamonds

Abstract:
A research team at Northwestern University has developed a tool that can precisely deliver tiny doses of drug-carrying nanomaterials to individual cells. The tool, called the nanofountain probe, functions in two different ways. In one mode, the probe acts like a fountain pen with drug-coated nanodiamonds serving as the ink, allowing researchers to create devices by "writing" with it. The second mode functions as a single-cell syringe, permitting direct injection of biomolecules or chemicals into individual cells. The research was led by Horacio Dante Espinosa, Ph.D., and Dean Ho, Ph.D., and the results appear in the journal Small.

Nanoscale "Fountain Pen" Draws Therapeutic Nanodiamonds

Bethesda, MD | Posted on June 27th, 2009

The nanofountain probe could be used both as a research tool for developing next-generation cancer treatments and as a nanomanufacturing tool to build the implantable drug delivery devices that will administer these treatments. In their current work, the investigators use the nanofountain probe to inject tiny doses of nanodiamonds into both healthy and cancerous cells. This technique will help cancer researchers investigate the efficacy of new drug-nanomaterial systems as they become available.

The group also used the same nanofountain probe to pattern dot arrays of drug-coated nanodiamonds directly on glass substrates. The production of these dot arrays, with dots that can be made smaller than 100 nanometers in diameter, provides the proof of concept by which to manufacture devices that will deliver these nanomaterials within the body. The work addresses two major challenges in the development and clinical application of nanomaterial-mediated drug-delivery schemes: dosage control and high spatial resolution.

In fundamental research and development, biologists are typically constrained to studying the effects of a drug on an entire cell population because it is difficult to deliver them to a single cell. To address this issue, the team used the nanofountain probe to target and inject single cells with a dose of nanodiamonds. "This allows us to deliver a precise dose to one cell and observe its response relative to its neighbors," said Dr. Ho. "This will allow us to investigate the ultimate efficacy of novel treatment strategies via a spectrum of internalization mechanisms."

Beyond the broad research focused on developing these drug-delivery schemes, manufacturing devices to execute the delivery will require the ability to precisely place doses of drug-coated nanomaterials. Dr. Ho and his colleagues previously developed a polymer patch that could be used to deliver chemotherapy drugs locally to sites where cancerous tumors had been removed. This patch is embedded with a layer of drug-coated nanodiamonds, which moderate the release of the drug. The patch is capable of controlled and sustained low levels of release over a period of months, reducing the need for chemotherapy following the removal of a tumor.

"An attractive enhancement will be to use the nanofountain probe to replace the continuous drug-nanodiamond films currently used in these devices with patterned arrays composed of multiple drugs," Dr. Ho explained. "This allows high-fidelity spatial tuning of dosing in intelligent devices for comprehensive treatment." Dr. Espinosa added, "One of the most significant aspects of this work is the nanofountain probe's ability to deliver nanomaterials coated with a broad range of drugs and other biological agents. The injection technique is currently being explored for delivery of a wide variety of bioagents, including DNA, viruses, and other therapeutically relevant materials."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds.”

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project