Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoscale Holes Provide Speed Boost for Diagnostic Tests

Abstract:
Microfluidic devices, essentially miniaturized chemical laboratories etched into material similar to a microprocessor chip, are revolutionizing diagnostic medicine by providing a technology platform that is more sensitive and less expensive than conventional analytical technologies. A new sensing method that relies on nanoscale holes drilled into a microfluidic device also could add "faster" to the list of benefits afforded by microfluidics.

Nanoscale Holes Provide Speed Boost for Diagnostic Tests

Bethesda, MD | Posted on June 27th, 2009

Reporting their work in the journal Analytical Chemistry, researchers at the University of British Columbia created a grid of 30 x 30 flow-through nanoscale holes to create a highly responsive sensor system that can detect biomolecules of interest without requiring the additional use of an optical label. They used a tightly focused laser to drill holes through a 100-nanometer-thick layer of gold deposited on a 100-nanometer-thick slab of silicon nitride. The resulting sensor array then was integrated into a microfluidic chip made of poly(dimethylsiloxane), a standard material used to make lab-on-a-chip devices for biomedical applications.

With the array in hand, the investigators then attached a monoclonal antibody to the gold lining inside the holes. This monoclonal antibody binds to a cancer biomarker protein known as PAX8. The researchers then took advantage of an optical phenomenon known as surface plasmon resonance (SPR), which takes place on thin films of gold. When irradiated with laser light, thin gold films will emit a sharp, bright burst of light whose wavelength changes as various molecules stick to the gold surface. In this case, the SPR signal changed whenever PAX8 bound to the antibody attached to the gold film lining the array holes. When compared with established SPR-based measurement techniques, the flow-through device had a response time that was sixfold faster while measuring PAX8 present at concentrations in the attomolar range.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Nanoholes as nanochannels: flow-through plasmonic sensing.”

Related News Press

News and information

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Microfluidics/Nanofluidics

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Nanomedicine

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Sensors

Nanoscience makes your wine better September 17th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Discoveries

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE