Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Delivering Cancer Drugs Directly to Tumors

Abstract:
An interdisciplinary team of researchers at Brigham and Women's Hospital and the Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology has demonstrated a better way to deliver cancer drugs directly to tumors. The researchers used specially engineered nanoparticles that can inhibit a signaling pathway and deliver a higher concentration of medication to the specific area. The research team, led by Shiladitya Sengupta, Ph.D., MIT, published its work in the Proceedings of the National Academy of Sciences of the United States of America.

Delivering Cancer Drugs Directly to Tumors

Bethesda, MD | Posted on June 27th, 2009

The investigators constructed the nanoparticles from a biodegradable, biocompatible, U.S. Food and Drug Administration-approved polymer that they chemically engineered to deliver a MAPK inhibitor. By inhibiting the MAPK signaling pathway, which is involved in a majority of human tumors, the nanoparticles hinder the multiplication of cancerous cells and predispose those cells to the cytotoxic effects of chemotherapeutic drugs. The team also modified the polymer to increase drug loading twentyfold compared with the unmodified nanoparticle.

The combination of nanoparticles and the cancer drug cisplatin proved successful in preventing the growth of cancerous skin and lung cells and also induced cell death. When researchers gave the same combination to mice with melanoma, it inhibited tumor growth and enhanced the efficacy of the cancer drug. The entire tumor regressed in 50 percent of mice compared with none in the group receiving cisplatin and the inhibitor without nanoparticles.

In previous work, the group had demonstrated that a combination of two drugs delivered with a nanoparticle could exert superior anticancer effects. However, most cancers converge into a few pathways for survival and uncontrolled division. "The nanoparticles target pathways involved in multiple cancer types and can be applied to a diverse set of cancers, including hard-to-treat cancers, such as breast, pancreatic, and liver cancer," noted Dr. Sengupta. "The potential to add homing beacons on the surface of the nanoparticles can increase the efficiency of selectively targeting specific tumors and can abolish off-target side effects."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy.”

Related News Press

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Discoveries

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Research partnerships

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE