Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Delivering Cancer Drugs Directly to Tumors

Abstract:
An interdisciplinary team of researchers at Brigham and Women's Hospital and the Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology has demonstrated a better way to deliver cancer drugs directly to tumors. The researchers used specially engineered nanoparticles that can inhibit a signaling pathway and deliver a higher concentration of medication to the specific area. The research team, led by Shiladitya Sengupta, Ph.D., MIT, published its work in the Proceedings of the National Academy of Sciences of the United States of America.

Delivering Cancer Drugs Directly to Tumors

Bethesda, MD | Posted on June 27th, 2009

The investigators constructed the nanoparticles from a biodegradable, biocompatible, U.S. Food and Drug Administration-approved polymer that they chemically engineered to deliver a MAPK inhibitor. By inhibiting the MAPK signaling pathway, which is involved in a majority of human tumors, the nanoparticles hinder the multiplication of cancerous cells and predispose those cells to the cytotoxic effects of chemotherapeutic drugs. The team also modified the polymer to increase drug loading twentyfold compared with the unmodified nanoparticle.

The combination of nanoparticles and the cancer drug cisplatin proved successful in preventing the growth of cancerous skin and lung cells and also induced cell death. When researchers gave the same combination to mice with melanoma, it inhibited tumor growth and enhanced the efficacy of the cancer drug. The entire tumor regressed in 50 percent of mice compared with none in the group receiving cisplatin and the inhibitor without nanoparticles.

In previous work, the group had demonstrated that a combination of two drugs delivered with a nanoparticle could exert superior anticancer effects. However, most cancers converge into a few pathways for survival and uncontrolled division. "The nanoparticles target pathways involved in multiple cancer types and can be applied to a diverse set of cancers, including hard-to-treat cancers, such as breast, pancreatic, and liver cancer," noted Dr. Sengupta. "The potential to add homing beacons on the surface of the nanoparticles can increase the efficiency of selectively targeting specific tumors and can abolish off-target side effects."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy.”

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Nanomedicine

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Discoveries

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Future solar panels September 2nd, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Research partnerships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE