Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Harnessing Nanoparticles To Track Cancer Cell Changes

Abstract:
The more dots there are, the more accurate a picture you get when you connect them. Cancer researchers adopting that philosophy have developed a new imaging technology that could give scientists the ability to simultaneously measure as many as 100 or more distinct features in or on a single cell. In a disease such as cancer, that capability would provide a much better picture of what is going on in individual tumor cells.

Harnessing Nanoparticles To Track Cancer Cell Changes

Bethesda, MD | Posted on June 27th, 2009

A Stanford University School of Medicine team led by Cathy Shachaf, Ph.D., has for the first time used specially designed dye-containing nanoparticles to simultaneously image two features within single cells. Although current single-cell flow cytometry technologies can provide up to 17 simultaneous visualizations, this new method has the potential to do far more. The new technology works by enhancing the detection of ultraspecific but very weak patterns, known as Raman signals, that molecules emit in response to light.

In a study published in the online journal PLoS ONE, the Stanford team was able to simultaneously monitor changes in two intracellular proteins that play crucial roles in the development of cancer. Successful development of the new technique may improve scientists' ability not only to diagnose cancers—for example, by determining how aggressive a tumor's constituent cells are—but also eventually to separate living, biopsied cancer cells from one another based on characteristics indicating their stage of progression or their degree of resistance to chemotherapeutic drugs. That would expedite the testing of treatments targeting a tumor's most recalcitrant cells, said Dr. Shachaf, a cancer researcher who works in a laboratory run by the study's senior author Garry P. Nolan, Ph.D., a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response.

Cancer starts out in a single cell, and its development is often heralded by changes in the activation levels of certain proteins. In the world of cell biology, one common way for proteins to become activated is through a process called phosphorylation, which slightly changes a protein's shape, in effect, turning it on. Two intracellular proteins, Stat1 and Stat6, play crucial roles in the development of cancer. The Stanford team was able to simultaneously monitor changes in the phosphorylation levels of both proteins in lab-cultured myeloid leukemia cells. The changes in Stat1 and Stat6 closely tracked those demonstrated with existing visualization methods, establishing proof of principle for the new approach.

Although the new technology so far has been used only to view cells on slides, it could eventually be used in a manner similar to flow cytometry, the current state-of-the-art technology, which lets scientists visualize single cells in motion. In flow cytometry, cells are bombarded with laser light as they pass through a scanning chamber. The cells then can be analyzed and, based on their characteristics, can be sorted and routed to different destinations within the cytometer.

Still, flow cytometry has its limits. It involves tethering fluorescent dye molecules to antibodies, with different colors tied to antibodies that target different molecules. The dye molecules respond to laser light by fluorescing—echoing light at exactly the same wavelength, or color, with which they were stimulated. The strength of the fluorescence indicates the abundance of the cell-surface features to which those dyes are now attached. But at some point, the light signals given off by multiple dyes begin to interfere with one another. It is unlikely that the number of distinct features flow cytometry can measure simultaneously will exceed 20 or so.

The new high-tech, dye-containing particles used by the Stanford team go a step further. They give off not just single-wavelength fluorescent echoes but also more complex fingerprints comprising wavelengths slightly different from the single-color beams that lasers emit. These patterns, or Raman signals, occur when energy levels of electrons are just barely modified by weak interactions among constituent atoms in the molecule being inspected.

Raman signals are emitted all the time by various molecules, but usually they are too weak to detect. To beef up their strength, the Stanford team employed specialized nanoparticles produced by Intel Corporation, each with its own distinctive signature. Intel has designed more than 100 different so-called COINs, or composite organic-inorganic nanoparticles, that are essentially sandwiches of dye molecules and atoms of metals such as silver, gold, or copper, whose reflective properties amplify a dye molecule's Raman signals while filtering out its inherent fluorescent response. The signals are collected and quantified by a customized, automated microscope.

Dr. Shachaf anticipates being able to demonstrate the simultaneous visualization of 9 or 10 COIN-tagged cellular features in the near future and hopes to bring that number to 20 or 30, a new high, before long. "The technology's capacity may ultimately far exceed that number," she added. Some day it could be used for more than 100 features. Meanwhile, another group outside Stanford, now collaborating with Dr. Nolan's group, has developed a prototypical device that can detect Raman signals in a continuous flow of single cells, analogous to flow cytometry but with higher resolving power, Dr. Shachaf said.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).”

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Imaging

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE