Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Computer-Guided Nanoparticle Therapy Destroys Tumors

Abstract:
Gold nanoshells are among the most promising new nanoscale therapeutics being developed to kill tumors, acting as antennas that turn light energy into heat that cooks cancer to death. Now, a multi-institutional research team has shown that polymer-coated gold nanorods one-up their spherical counterparts, with a single dose completely destroying all tumors in a nonhuman animal model of human cancer.

Computer-Guided Nanoparticle Therapy Destroys Tumors

Bethesda, MD | Posted on June 27th, 2009

Reporting its work in the journal Cancer Research, a research team headed by Sangeeta N. Bhatia, M.D., Ph.D., Massachusetts Institute of Technology, and Michael J. Sailor, Ph.D., University of California, San Diego, described its development of gold nanorods, coated with polyethylene glycol, which set a new record for the time they remain circulating in the bloodstream. This long-circulation half-life of approximately 17 hours affords the nanorods the opportunity to accumulate in tumors, thanks to the leaky blood vessels that surround malignancies. Both Dr. Bhatia and Dr. Sailor are members of the National Cancer Institute's Alliance for Nanotechnology in Cancer.

Gold nanoparticles can absorb different frequencies of light, depending on their shape. The rod-shaped particles developed for this study absorb near-infrared light, which heats the nanorods but passes harmlessly through human tissue. In the current work, tumors in mice that received an intravenous injection of nanorods plus near-infrared laser treatment disappeared within 15 days. Those mice survived for 3 months, with no evidence of recurrence, until the end of the study, whereas mice that received no treatment or only the nanorods or laser died within weeks.

During a single exposure to a near-infrared laser, the nanorods heat up to 70° C, hot enough to kill tumor cells. Additionally, heating them to a lower temperature weakens tumor cells enough to enhance the effectiveness of existing chemotherapy treatments, raising the possibility of using the nanorods as a supplement to those treatments. The nanorods also could be used to kill tumor cells left behind after surgery. The investigators note that the nanorods can be more than 1,000 times more precise than a surgeon's scalpel, so potentially they could remove residual cells the surgeon cannot get at.

Another useful characteristic of the gold nanorods is that they are very efficient at absorbing x-rays, providing a sensitivity boost to x-ray imaging methods such as computerized tomography scanning. The investigators took advantage of this property, using x-rays to create a detailed three-dimensional map of where the nanorods accumulated in the tumor-bearing animals. They then used this map to calculate the optimal irradiation protocol to maximize the tumor-killing effect and minimize damage to healthy tissue.

The nanorods' homing abilities also make them a promising tool for diagnosing tumors. After the particles are injected, they can be imaged using a technique known as Raman scattering. Any tissue that lights up, other than liver or spleen tissue, could harbor an invasive tumor. In a second paper, published in the journal Advanced Materials, the researchers showed they could enhance the nanorods' imaging abilities by adding molecules that absorb near-infrared light to the surface of the nanorods. Because of this surface-enhanced Raman scattering, very low concentrations of nanorods—only a few parts per trillion in water—can be detected.

Another advantage of the nanorods is that by coating them with different types of light-scattering molecules, they can be designed to simultaneously gather multiple types of information—not only whether there is a tumor but also whether there is a risk of it invading other tissues, whether it is a primary or secondary tumor, and where it originated.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.”

View journal citation - “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating.”

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Nanomedicine

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Research partnerships

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project