Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanobiotech Researcher Receives State Funds to Support Commercialization of diabetes treatment

Microcapsules with embedded gadolium-gold nanoparticles can be easily visualized with A (T1-weighted positive contrast MR imaging), B (T2-weighted negative contrast MR imaging). C (X-ray/CT imaging) or D (ultrasound imaging). (Credit: Dian Arifin/Bulte Lab)
Microcapsules with embedded gadolium-gold nanoparticles can be easily visualized with A (T1-weighted positive contrast MR imaging), B (T2-weighted negative contrast MR imaging). C (X-ray/CT imaging) or D (ultrasound imaging). (Credit: Dian Arifin/Bulte Lab)

Abstract:
On June 4, the state announced 12 winning research projects that will receive part of $3 million in nanobiotechnology research funding from the 2009 Maryland Nanobiotechnology Research and Industry Competition Grants. Jeff Bulte, an affiliated faculty member of the Institute for NanoBioTechnology and professor of Radiology in the School of Medicine, received a one-time $230,000 to commercialize a promising therapy for type 1 diabetes.

Nanobiotech Researcher Receives State Funds to Support Commercialization of diabetes treatment

Baltimore, MD | Posted on June 24th, 2009

Bulte and his postdoctoral fellow Dian Arifin are collaborating with the Baltimore-based company Surgivison Inc. on a project entitled Image-Guided Encapsulated Cell Therapy using Multimodal Nanoparticles. Bulte explains that the project aims to develop microcapsules that contain human islets, the insulin producing cluster of cells in the pancreas, which will be part of a cell therapy for type 1 diabetes. The microcapsules are engineered to protect the islets from attack by the immune system, which would normally treat them as foreign invaders. In addition, the transplanted islets microcapsules also have gadolinium-gold nanoparticles embedded in them so that they can be easily seen with non-invasive imaging techniques, such as magnetic resonance, X-ray, computerized tomography, or ultrasound.

"The gadolium-gold nanoparticles allow the encapsulated islets to be injected under imaging guidance. That way you can monitor how many microparticles actually make it to the target site and how many capsules rupture and are subsequently rejected by the immune system," says Bulte. "As part of our team, Surgivision Inc. is developing catheters and injection devices that can be used to deliver and detect our encapsulated islets in real-time."

According to a press release from the state Department of Business and Economic Development (DBED), this was Maryland's first nanobiotechnology research grants competition. DBED, through the Maryland Biotechnology Center, and Maryland Technology Development Corporation jointly administered the nanotechnology grant competition. 103 applications were received in response to the competition's solicitation with 43 finalists subject to technical reviews of their research proposals.

Said Gov. Martin O'Malley in the release, "These grants are an important part of our long-term strategy for growing Maryland's bioscience industry, creating jobs, and positioning Maryland as a national leader in bio and life sciences… (They) will provide critical funding to Maryland companies working to develop innovative life saving technologies for the treatment of cancer and diagnosis of infectious diseases."

####

About Johns Hopkins Institute for NanoBioTechnology
The Johns Hopkins Institute for NanoBioTechnology (INBT) at Johns Hopkins University brings together more than 175 researchers from the Bloomberg School of Public Health, Krieger School of Arts and Sciences, School of Medicine, Applied Physics Laboratory, and Whiting School of Engineering to create new knowledge and new technologies at the interface of nanoscience and medicine.

For more information, please click here

Contacts:
Johns Hopkins Institute for NanoBioTechnology
3400 North Charles Street
Baltimore, MD 21218


Phone: (410) 516-3423
Fax: (410) 516-2355

Copyright © Johns Hopkins Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Nanobiotechnology

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic