Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Fabricated Material Changes Color Instantly In Response to External Magnetic Field

Yadong Yin is an assistant professor of chemistry at UC Riverside. Photo credit: Yin lab, UC Riverside.
Yadong Yin is an assistant professor of chemistry at UC Riverside. Photo credit: Yin lab, UC Riverside.

Abstract:
New mechanism for inducing color change in materials paves way for manufacturing rewritable color display units, environmentally friendly color paints

New Fabricated Material Changes Color Instantly In Response to External Magnetic Field

Riverside, CA | Posted on June 16th, 2009

A research team led by a chemist at the University of California, Riverside has fabricated microscopic polymer beads that change color instantly and reversibly when external magnetic fields acting upon the microspheres change orientation.

The beads or "magnetochromatic microspheres" have excellent structural stability. They also are highly compatible with various types of dispersion media such as water, alcohol, hexane and even polymer solutions, allowing them to retain magnetically tunable colors in a variety of chemical environments.

"Unlike many conventional approaches, the instantaneous color change occurs with no change in the structure or intrinsic properties of the microspheres themselves," said Yadong Yin, an assistant professor of chemistry who led the study that brought together chemists at UCR and engineers at Seoul National University, South Korea. "What changes instead are the magnetic fields acting externally on the orientation of these microspheres, these photonic crystals. Our work provides a new mechanism for inducing color change in materials. Now, for the first time, stable photonic materials with tunable colors can be fabricated on a large scale."

Applications of the new material include display type units such as rewritable or reusable signage, posters, papers and labels, and other magnetically activated security features. The new material also can be used to make environmentally friendly pigments for paints and cosmetics, as well as ink materials for color printing.

"Within a certain range, it is possible also to tune the color of the material by simply rotating the microspheres," Yin said.

Study results appeared June 15 in the online issue of the Journal of the American Chemical Society.

"The new technology has a great potential for a wide range of photonic applications because the on/off switching of the diffraction color by the rotating photonic sphere is fast, greatly simplifying the pixel structures," said Seoul National University's Sunghoon Kwon, a leading expert in biophotonics and nanoengineering, whose lab collaborated with Yin's lab on the research. "Therefore, the new technology is suitable for very large-scale displays, such as active signage."

In their lab experiments, the researchers embedded arrays of spatially ordered magnetic iron oxide nanostructures within each polymer microsphere, enabling its colors to be switched on and off simply by changing the microsphere's orientation - or more precisely the orientation of the array. Furthermore, the new system has the advantage of producing bistable color states, required for making rewritable displays.

Yin explained that the color observed in the new materials is "structural color" because it is caused by interference effects rather than pigments. Such color effects, as seen in colorful feathers of many birds, butterfly wings and beetle shells, are produced when microstructures in these objects are aligned in periodic arrays.

"Conventional methods to produce tunable structural color rely on changing the periodicity of the array or the refractive index of the materials - changes that are difficult to achieve or involve slow processes," he said. "In our method, the color is tuned by changing the relative orientation of the periodic arrays in the microspheres by conveniently using external fields. The use of magnetic fields as external stimuli has the additional benefits of instant action, contactless control and easy integration into electronic devices already in the market."

Said Luke P. Lee, the Lloyd Distinguished Professor of Bioengineering at UC Berkeley, who was not involved in the research, "This is a smart and effective solution to solve the problems of previous works, which could not tune the photonic crystal structures."

To fabricate the microspheres, the researchers first mixed magnetic iron oxide particles into a resin, which is initially in liquid phase but later turns solid on exposure to ultraviolet curable resin. They then dispersed the resin solution in oil (mineral oil or silicon oil), whereupon the resin transformed into spherical droplets in the oil. Next, the researchers applied an external magnetic field to organize the iron oxide particles into periodically ordered structures. These structures display a reflective color if viewed along the direction of the magnetic field. Finally, the research team exposed the liquid system to ultraviolet radiation to polymerize the resin droplets and make them solid microspheres.

Next in the research, Yin and his colleagues plan to work on the specific applications of the magnetochromatic microspheres. "Rewritable energy saving display units such as papers and posters are our main interests," he said. "We will also try to develop similar new material for chemical and biological sensors."

Yin, recently named a Cottrell Scholar by the Research Corporation for Science Advancement, and Kwon were joined in the research by Jianping Ge (first author of the research paper), Le He, Zhenda Lu and James Goebl of UCR; and Howon Lee, Junhoi Kim and Hyoki Kim of Seoul National University.

The four-month study was supported by UC Riverside startup funds and the Petroleum Research Fund administered by the American Chemical Society.

The UCR Office of Technology Commercialization has filed a patent application on the technology and is currently seeking partners in industry interested in developing the technology commercially.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video

Related News Press

News and information

Sunblock poses potential hazard to sea life August 20th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Display technology/LEDs/SS Lighting/OLEDs

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Materials/Metamaterials

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Announcements

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Environment

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE