Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Advances In Medical Technology: What Does The Future Hold?

June 16th, 2009

Advances In Medical Technology: What Does The Future Hold?

Abstract:
Although sophisticated medical technology is already available in health systems in developed countries, further advances are constantly being made. As a result of the addition of medical nanotechnology to existing knowledge of molecular and cellular biology, it seems likely that new, more personalised, more accurate and more rapid diagnostic techniques will be devised in the future, as well as new treatments that are also more personalised and promote regeneration of the organism.

Clearly, as areas of research such as biomaterials or tissue engineering are developed for use in regenerative medicine, the range of opportunities will increase dramatically. Josep Anton Planell, the director of the Institute for Bioengineering of Catalonia (IBEC), which was formed by the UB, the UPC and the Generalitat (Government of Catalonia) and has its headquarters in Barcelona Science Park, considers that "in the future, it will be possible to design intelligent biomaterials that, when placed where damaged tissue needs to be regenerated, will be able to stimulate the stem cells to do what we want them to do". However, more knowledge is needed to perfect the process. He states, "We are beginning to understand which biochemical, biophysical or mechanical signals activate cells to regenerate tissue. To be able to intervene, therefore, we first need to be able to quantify and assess the signals that generate the cell response and form a language."

These processes occur at the molecular level or involve very low intensity stimuli. However, nanotechnology is contributing to the emergence of the tools needed to study them. Such technology includes lasers to identify the proteins expressed in the cell membrane, nanosensors that determine whether the cell is uptaking or excreting an ion such as potassium or calcium, biosensors to detect cancer markers, and atomic force microscopes that enable material to be handled on nanometre and nanonewton scales. In short, a wide range of diagnostic systems have been designed that can more accurately detect the physiology and localization of a specific disease.

Source:
sciencedaily.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Nanomedicine

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Sensors

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Tools

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Nanobiotechnology

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project