Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Advances In Medical Technology: What Does The Future Hold?

June 16th, 2009

Advances In Medical Technology: What Does The Future Hold?

Abstract:
Although sophisticated medical technology is already available in health systems in developed countries, further advances are constantly being made. As a result of the addition of medical nanotechnology to existing knowledge of molecular and cellular biology, it seems likely that new, more personalised, more accurate and more rapid diagnostic techniques will be devised in the future, as well as new treatments that are also more personalised and promote regeneration of the organism.

Clearly, as areas of research such as biomaterials or tissue engineering are developed for use in regenerative medicine, the range of opportunities will increase dramatically. Josep Anton Planell, the director of the Institute for Bioengineering of Catalonia (IBEC), which was formed by the UB, the UPC and the Generalitat (Government of Catalonia) and has its headquarters in Barcelona Science Park, considers that "in the future, it will be possible to design intelligent biomaterials that, when placed where damaged tissue needs to be regenerated, will be able to stimulate the stem cells to do what we want them to do". However, more knowledge is needed to perfect the process. He states, "We are beginning to understand which biochemical, biophysical or mechanical signals activate cells to regenerate tissue. To be able to intervene, therefore, we first need to be able to quantify and assess the signals that generate the cell response and form a language."

These processes occur at the molecular level or involve very low intensity stimuli. However, nanotechnology is contributing to the emergence of the tools needed to study them. Such technology includes lasers to identify the proteins expressed in the cell membrane, nanosensors that determine whether the cell is uptaking or excreting an ion such as potassium or calcium, biosensors to detect cancer markers, and atomic force microscopes that enable material to be handled on nanometre and nanonewton scales. In short, a wide range of diagnostic systems have been designed that can more accurately detect the physiology and localization of a specific disease.

Source:
sciencedaily.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Nanomedicine

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

Sensors

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Tools

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Nanobiotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Programming adult stem cells to treat muscular dystrophy and more by mimicking nature July 22nd, 2015

Biophotonics - Global Strategic Business Report 2015 July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project