Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Advances In Medical Technology: What Does The Future Hold?

June 16th, 2009

Advances In Medical Technology: What Does The Future Hold?

Abstract:
Although sophisticated medical technology is already available in health systems in developed countries, further advances are constantly being made. As a result of the addition of medical nanotechnology to existing knowledge of molecular and cellular biology, it seems likely that new, more personalised, more accurate and more rapid diagnostic techniques will be devised in the future, as well as new treatments that are also more personalised and promote regeneration of the organism.

Clearly, as areas of research such as biomaterials or tissue engineering are developed for use in regenerative medicine, the range of opportunities will increase dramatically. Josep Anton Planell, the director of the Institute for Bioengineering of Catalonia (IBEC), which was formed by the UB, the UPC and the Generalitat (Government of Catalonia) and has its headquarters in Barcelona Science Park, considers that "in the future, it will be possible to design intelligent biomaterials that, when placed where damaged tissue needs to be regenerated, will be able to stimulate the stem cells to do what we want them to do". However, more knowledge is needed to perfect the process. He states, "We are beginning to understand which biochemical, biophysical or mechanical signals activate cells to regenerate tissue. To be able to intervene, therefore, we first need to be able to quantify and assess the signals that generate the cell response and form a language."

These processes occur at the molecular level or involve very low intensity stimuli. However, nanotechnology is contributing to the emergence of the tools needed to study them. Such technology includes lasers to identify the proteins expressed in the cell membrane, nanosensors that determine whether the cell is uptaking or excreting an ion such as potassium or calcium, biosensors to detect cancer markers, and atomic force microscopes that enable material to be handled on nanometre and nanonewton scales. In short, a wide range of diagnostic systems have been designed that can more accurately detect the physiology and localization of a specific disease.

Source:
sciencedaily.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project