Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NYU Researchers Create Method to Precisely Glue Particles Together On the Micro- and Nano-Scale

The novel DNA 'sticky ends' can form intra-particle loops and hairpins (e.g. schemes II & III), giving more control over the particles' interactions than conventional sticky ends that can only form inter-particle bridges (scheme Ia).
The novel DNA 'sticky ends' can form intra-particle loops and hairpins (e.g. schemes II & III), giving more control over the particles' interactions than conventional sticky ends that can only form inter-particle bridges (scheme Ia).

Abstract:
Researchers at New York University have created a method to precisely bind nano- and micrometer-sized particles together into larger-scale structures with useful materials properties. Their work, which appears in the latest issue of the journal Nature Materials, overcomes the problem of uncontrollable sticking, which had been a barrier to the successful creation of stable microscopic and macroscopic structures with a sophisticated architecture.

NYU Researchers Create Method to Precisely Glue Particles Together On the Micro- and Nano-Scale

New York, NY | Posted on June 16th, 2009

The long-term goal of the NYU researchers is to create non-biological materials that have the ability to self-replicate. In the process of self-replication, the number of objects doubles every cycle. This exponential growth stands in sharp contrast to conventional materials production, where doubling the amount of product requires twice the production time. At present, this linear scaling poses a major stumbling block for the fabrication of useful quantities of microscopic objects with a sophisticated architecture, which are needed for the next stages of micro- and nanotechnology.

In order to obtain self-replication, the researchers coat micrometer-sized particles with short stretches of DNA, so-called "sticky ends". Each sticky end consists of a particular sequence of DNA building blocks and sticky ends with complementary sequences form very specific bonds that are reversible. Below a certain temperature, the particles recognize each other and bind together, while they unbind again above that temperature. This enables a scheme in which the particles spontaneously organize into an exact copy on top of a template, which can then be released by elevating the temperature.

Scientists have used DNA-mediated interactions before, but it has always been very difficult to bind only a subset of particles—usually, either all particles or no particles are bound. This makes it challenging to make well-defined structures. Therefore, the NYU team, comprised of researchers in the Physics Department's Center for Soft Matter Research and in the university's Department of Chemistry, sought to find a method to better control the interactions and organization of the particles.

To do so, the researchers took advantage of the ability of certain DNA sequences to fold into a hairpin-like structure or to bind to neighboring sticky ends on the same particle. They found that if they lowered the temperature very rapidly, these sticky ends fold up on the particle—before they can bind to sticky ends on other particles. The particles stuck only when they were held together for several minutes—a sufficient period for the sticky ends to find a binding partner on another particle.

"We can finely tune and even switch off the attractions between particles, rendering them inert unless they are heated or held together—like a nano-contact glue," said Mirjam Leunissen, a post-doctoral fellow in the Center for Soft Matter Research and the study's lead author.

To maneuver the particles, the team used optical traps, or tweezers. This tool, created by David Grier, chair of NYU's Department of Physics and one of the paper's authors, uses laser beams to move objects as small as a few nanometers, or one-billionth of a meter.

The work has a range of possible applications. Notably, because the size of micrometer-scale particles—approximately one-tenth the thickness of a strand of human hair—is comparable to the wavelength of visible light, ordered arrays of these particles can be used for optical devices. These include sensors and photonic crystals that can switch light analogous to the way semi-conductors switch electrical currents. Moreover, the same organizational principles apply to smaller nanoparticles, which possess a wide range of electrical, optical, and magnetic properties that are useful for applications.

The work was supported by the National Science Foundation's Materials Research Science and Engineering Center (MRSEC) program, the Keck Foundation, and the Netherlands Organization for Scientific Research.

####

About New York University
The center of NYU is its Washington Square campus in the heart of Greenwich Village. One of the city's most creative and energetic communities, the Village is a historic neighborhood that has attracted generations of writers, musicians, artists, and intellectuals. Beyond the Village, New York City becomes an extension of the University's campus.

Enrollment in the undergraduate divisions of the University ranges between 100 and 6,500. While some introductory classes have large numbers of students, many classes are small. With more than 2,500 courses offered, the University awards more than 25 different degrees.

For more information, please click here

Contacts:
James Devitt
(212) 998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Sensors

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Discoveries

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE