Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Potential environmental impact of nanoparticles studied through aluminum in soil

Abstract:
Nanoparticles offer multiple benefits to society in areas such as medicine, energy production and conservation, and pollution clean-up. Because nanoparticles is a relatively new technology area, we need to understand the dangers nanoparticles pose in the environment before their use becomes widespread. Environmental scientists are developing methods to assess nanoparticle distribution, fate, and toxicity in the environment. Naturally, a key part of the science relates to understanding how nanoparticles change once they interact with the environment

Potential environmental impact of nanoparticles studied through aluminum in soil

Brussels, Belgium & Pensacola, FL | Posted on June 16th, 2009

A case study in the June 2009 issue of Environmental Toxicology and Chemistry examines changes and transport in aluminum nanoparticles, currently used in energetics, alloys, coatings, and sensors, when they are exposed to relevant environmental conditions. In this study, nanoparticle suspensions were introduced into soil columns, where their concentration, size, agglomeration state, and particle charge were studied. Soil studies are important to understand exposure to plants and soil-dwelling organisms and the potential for nanoparticles to migrate into groundwater. A key finding was that characteristics of the nanoparticle and the environment interact to influence the distribution of the particles in the environment.

The present study demonstrated that the characteristics of nanoparticles are dynamic in the environment and that this is an important consideration for the design and interpretation of nanoparticle studies. The major factors influencing the transport of aluminum nanoparticles were agglomeration and surface charge. During this study, aluminum nanoparticles rapidly agglomerated, forming particles well outside the range of nanoparticles (i.e., micron size) especially when exposed to simulated groundwater. The increased size of the particles via agglomeration significantly reduced transport of the particles in soil columns.

Surface charges of the particles and the soil were also determining factors in the transport of nanoparticles in soil. Dramatic changes in the surface charge can be caused by changes in nanoparticle coating, surface treatment, and the characteristics of the media it is in. In this study, changing the water used in the soil columns from deionized water to simulated groundwater caused large changes in the surface charge of the aluminum nanoparticles and their ability to move through the soil columns. Typically, when particles have a surface charge similar to the matrix, they will be transported, and when the particle-matrix charges are opposite, the particles will remain in the matrix.

Studies like this will foster the development of models to predict the relationship between rates of agglomeration, size of the starting material, and charge of the nanoparticle and the matrix. This information is critical to determine how nanoparticles distribute in the environment and will help to explain uptake and toxicity to organisms in the environment and to man. Finally, identifying those factors that influence distribution in the environment can assist in designing nanoparticles that have limited transport potential and therefore limited impact on the environment.

The full text of this article, Nanoparticle Characteristics Affecting Environmental Fate and Transport Through Soil (Vol. 28, No. 6, June 2009) is available at www.allenpress.com/pdf/ENTC_28.6_1191-1199_.pdf

####

About Environmental Toxicology and Chemistry
Environmental Toxicology and Chemistry is a publication of the Society of Environmental Toxicology and Chemistry. It is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment.

For more information, please click here

Contacts:
Media Contact:
Robin Barker
Allen Press, Inc.
800/627-0326 ext. 410

Copyright © Environmental Toxicology and Chemistry

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Preparing for Nano

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Thailand to host NanoThailand 2012 December 18th, 2011

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Food/Agriculture/Supplements

Click! That's how modern chemistry bonds nanoparticles to a substrate March 19th, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Turmeric Extract Applied in Production of Antibacterial Nanodrugs March 12th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Energy

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Water

Square ice filling for a graphene sandwich March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Safety-Nanoparticles/Risk management

NNI Publishes Workshop Report Assessing the Status of EHS Risk Science: Report examines progress three years after the release of the 2011 NNI EHS Research Strategy March 23rd, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

More study needed to clarify impact of cellulose nanocrystals on health: Few studies explore toxicity of cellulose nanocrystals March 10th, 2015

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE