Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Potential environmental impact of nanoparticles studied through aluminum in soil

Abstract:
Nanoparticles offer multiple benefits to society in areas such as medicine, energy production and conservation, and pollution clean-up. Because nanoparticles is a relatively new technology area, we need to understand the dangers nanoparticles pose in the environment before their use becomes widespread. Environmental scientists are developing methods to assess nanoparticle distribution, fate, and toxicity in the environment. Naturally, a key part of the science relates to understanding how nanoparticles change once they interact with the environment

Potential environmental impact of nanoparticles studied through aluminum in soil

Brussels, Belgium & Pensacola, FL | Posted on June 16th, 2009

A case study in the June 2009 issue of Environmental Toxicology and Chemistry examines changes and transport in aluminum nanoparticles, currently used in energetics, alloys, coatings, and sensors, when they are exposed to relevant environmental conditions. In this study, nanoparticle suspensions were introduced into soil columns, where their concentration, size, agglomeration state, and particle charge were studied. Soil studies are important to understand exposure to plants and soil-dwelling organisms and the potential for nanoparticles to migrate into groundwater. A key finding was that characteristics of the nanoparticle and the environment interact to influence the distribution of the particles in the environment.

The present study demonstrated that the characteristics of nanoparticles are dynamic in the environment and that this is an important consideration for the design and interpretation of nanoparticle studies. The major factors influencing the transport of aluminum nanoparticles were agglomeration and surface charge. During this study, aluminum nanoparticles rapidly agglomerated, forming particles well outside the range of nanoparticles (i.e., micron size) especially when exposed to simulated groundwater. The increased size of the particles via agglomeration significantly reduced transport of the particles in soil columns.

Surface charges of the particles and the soil were also determining factors in the transport of nanoparticles in soil. Dramatic changes in the surface charge can be caused by changes in nanoparticle coating, surface treatment, and the characteristics of the media it is in. In this study, changing the water used in the soil columns from deionized water to simulated groundwater caused large changes in the surface charge of the aluminum nanoparticles and their ability to move through the soil columns. Typically, when particles have a surface charge similar to the matrix, they will be transported, and when the particle-matrix charges are opposite, the particles will remain in the matrix.

Studies like this will foster the development of models to predict the relationship between rates of agglomeration, size of the starting material, and charge of the nanoparticle and the matrix. This information is critical to determine how nanoparticles distribute in the environment and will help to explain uptake and toxicity to organisms in the environment and to man. Finally, identifying those factors that influence distribution in the environment can assist in designing nanoparticles that have limited transport potential and therefore limited impact on the environment.

The full text of this article, Nanoparticle Characteristics Affecting Environmental Fate and Transport Through Soil (Vol. 28, No. 6, June 2009) is available at www.allenpress.com/pdf/ENTC_28.6_1191-1199_.pdf

####

About Environmental Toxicology and Chemistry
Environmental Toxicology and Chemistry is a publication of the Society of Environmental Toxicology and Chemistry. It is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment.

For more information, please click here

Contacts:
Media Contact:
Robin Barker
Allen Press, Inc.
800/627-0326 ext. 410

Copyright © Environmental Toxicology and Chemistry

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Announcements

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Food/Agriculture/Supplements

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Environment

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Energy

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Water

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Safety-Nanoparticles/Risk management

How harmful are nano-copper and anti-fungal combinations in the waterways? October 27th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project