Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scatty Lasers

Abstract:
Nanoparticle Scattering Improves Laser Performance

Scatty Lasers

Posted on June 15th, 2009

"Light scattering" and "optical performance" are two concepts that usually head in opposite directions, but they have recently been shown to walk happily hand-in-hand. The results are impressive laser output from some new composite materials and the potential for making commercially viable solid-state dye lasers.

In an article in Advanced Materials, Dr. Inmaculada Garcia-Moreno and her colleagues at the Instituto de Quimica-Fisica "Rocasolano" and the Instituto de Ciencia y Tecnología de Polímeros in Madrid have shown that certain nanoparticles added to dye lasers can scatter light in a way that increases the efficiency of the material's laser action as well as make the materials easier to handle.

Lasers made from dyes can be tuned over a very broad visible wavelength, from the near ultraviolet to the infrared. They can be pulsed at high energy and are used for applications ranging from isotope separation and pollution monitoring to cancer therapies and tattoo removal. As the dyes used are liquids it is often helpful if they can be incorporated into a solid material. Organic polymer materials are usually used for this purpose, and inorganic particles are often added to improve the physical stability and handling properties. Unfortunately, the inorganic additives usually have detrimental effects on the optical properties of the composites, such as transparency and laser capabilities.

However, as the Spanish researchers have demonstrated, if the inorganic material comprises particles that are both small enough and randomly enough distributed, then the transparency of the composites is not affected and the emission from the dye is actually enhanced.

The chemistry that has made this possible is the use of nanoparticles of polyhedral oligomeric silsesquioxane (POSS) for the inorganic component. POSS is a silicon and oxygen-based material that can be readily incorporated into an organic matrix. The nanoparticles were found to be dispersed on a molecular level. The physics behind the laser enhancement is a phenomenon known as "incoherent random laser", in which the coherent light emitted by the dye is scattered weakly by the POSS nanoparticles, causing it to have an elongated path inside the material and providing extra feedback.

The researchers initially found it difficult to realize that a homogeneous material with nanoparticles in the range 0.5-4 nm could sustain scattering, but were able to show that not only did it occur, but that the effect was independent of the type of dye molecules used and their photophysics. "Thus," Dr. Garcia-Moreno claims, "dye-doped POSS solutions could be defined as a kind of universal gain media, overcoming the dye/host specificity that has been recognized as one of the greatest limitations of these laser systems."

Other advantages include "the easy synthesis of the POSS-based hybrid materials" and "their significantly improved physical, thermal, and optical properties as compared with the materials used up to now for incorporating lasing dyes". The researchers therefore see the possibility of using these new hybrid materials as alternative sources for optoelectronic devices, competing with dendronized or grafted polymers. "The POSS-based materials show the potential to bring to life a practical, commercial, easy-to-handle, and stable solid-state dye laser."


Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission

A. Costela, I. Garcia-Moreno*, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, Advanced Materials, 2009, DOI: 10.1002/adma.200900799

Available online at doi.wiley.com/10.1002/adma.200900799 on June 2, 2009.

####

About WILEY-VCH
Carmen Teutsch
Assistant Editor
Macromolecular Journals / Plasma Processes & Polymers
Wiley-VCH Verlag GmbH & Co.KGaA
Boschstraße 12
D - 69469 Weinheim
Phone: +49 (0) 6201 - 606 238
Fax: +49 (0) 6201 - 606 309

Copyright © WILEY-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Discoveries

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Announcements

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Photonics/Optics/Lasers

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE