Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scatty Lasers

Abstract:
Nanoparticle Scattering Improves Laser Performance

Scatty Lasers

Posted on June 15th, 2009

"Light scattering" and "optical performance" are two concepts that usually head in opposite directions, but they have recently been shown to walk happily hand-in-hand. The results are impressive laser output from some new composite materials and the potential for making commercially viable solid-state dye lasers.

In an article in Advanced Materials, Dr. Inmaculada Garcia-Moreno and her colleagues at the Instituto de Quimica-Fisica "Rocasolano" and the Instituto de Ciencia y Tecnología de Polímeros in Madrid have shown that certain nanoparticles added to dye lasers can scatter light in a way that increases the efficiency of the material's laser action as well as make the materials easier to handle.

Lasers made from dyes can be tuned over a very broad visible wavelength, from the near ultraviolet to the infrared. They can be pulsed at high energy and are used for applications ranging from isotope separation and pollution monitoring to cancer therapies and tattoo removal. As the dyes used are liquids it is often helpful if they can be incorporated into a solid material. Organic polymer materials are usually used for this purpose, and inorganic particles are often added to improve the physical stability and handling properties. Unfortunately, the inorganic additives usually have detrimental effects on the optical properties of the composites, such as transparency and laser capabilities.

However, as the Spanish researchers have demonstrated, if the inorganic material comprises particles that are both small enough and randomly enough distributed, then the transparency of the composites is not affected and the emission from the dye is actually enhanced.

The chemistry that has made this possible is the use of nanoparticles of polyhedral oligomeric silsesquioxane (POSS) for the inorganic component. POSS is a silicon and oxygen-based material that can be readily incorporated into an organic matrix. The nanoparticles were found to be dispersed on a molecular level. The physics behind the laser enhancement is a phenomenon known as "incoherent random laser", in which the coherent light emitted by the dye is scattered weakly by the POSS nanoparticles, causing it to have an elongated path inside the material and providing extra feedback.

The researchers initially found it difficult to realize that a homogeneous material with nanoparticles in the range 0.5-4 nm could sustain scattering, but were able to show that not only did it occur, but that the effect was independent of the type of dye molecules used and their photophysics. "Thus," Dr. Garcia-Moreno claims, "dye-doped POSS solutions could be defined as a kind of universal gain media, overcoming the dye/host specificity that has been recognized as one of the greatest limitations of these laser systems."

Other advantages include "the easy synthesis of the POSS-based hybrid materials" and "their significantly improved physical, thermal, and optical properties as compared with the materials used up to now for incorporating lasing dyes". The researchers therefore see the possibility of using these new hybrid materials as alternative sources for optoelectronic devices, competing with dendronized or grafted polymers. "The POSS-based materials show the potential to bring to life a practical, commercial, easy-to-handle, and stable solid-state dye laser."


Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission

A. Costela, I. Garcia-Moreno*, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, Advanced Materials, 2009, DOI: 10.1002/adma.200900799

Available online at doi.wiley.com/10.1002/adma.200900799 on June 2, 2009.

####

About WILEY-VCH
Carmen Teutsch
Assistant Editor
Macromolecular Journals / Plasma Processes & Polymers
Wiley-VCH Verlag GmbH & Co.KGaA
Boschstraße 12
D - 69469 Weinheim
Phone: +49 (0) 6201 - 606 238
Fax: +49 (0) 6201 - 606 309

Copyright © WILEY-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Photonics/Optics/Lasers

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project