Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scatty Lasers

Abstract:
Nanoparticle Scattering Improves Laser Performance

Scatty Lasers

Posted on June 15th, 2009

"Light scattering" and "optical performance" are two concepts that usually head in opposite directions, but they have recently been shown to walk happily hand-in-hand. The results are impressive laser output from some new composite materials and the potential for making commercially viable solid-state dye lasers.

In an article in Advanced Materials, Dr. Inmaculada Garcia-Moreno and her colleagues at the Instituto de Quimica-Fisica "Rocasolano" and the Instituto de Ciencia y Tecnología de Polímeros in Madrid have shown that certain nanoparticles added to dye lasers can scatter light in a way that increases the efficiency of the material's laser action as well as make the materials easier to handle.

Lasers made from dyes can be tuned over a very broad visible wavelength, from the near ultraviolet to the infrared. They can be pulsed at high energy and are used for applications ranging from isotope separation and pollution monitoring to cancer therapies and tattoo removal. As the dyes used are liquids it is often helpful if they can be incorporated into a solid material. Organic polymer materials are usually used for this purpose, and inorganic particles are often added to improve the physical stability and handling properties. Unfortunately, the inorganic additives usually have detrimental effects on the optical properties of the composites, such as transparency and laser capabilities.

However, as the Spanish researchers have demonstrated, if the inorganic material comprises particles that are both small enough and randomly enough distributed, then the transparency of the composites is not affected and the emission from the dye is actually enhanced.

The chemistry that has made this possible is the use of nanoparticles of polyhedral oligomeric silsesquioxane (POSS) for the inorganic component. POSS is a silicon and oxygen-based material that can be readily incorporated into an organic matrix. The nanoparticles were found to be dispersed on a molecular level. The physics behind the laser enhancement is a phenomenon known as "incoherent random laser", in which the coherent light emitted by the dye is scattered weakly by the POSS nanoparticles, causing it to have an elongated path inside the material and providing extra feedback.

The researchers initially found it difficult to realize that a homogeneous material with nanoparticles in the range 0.5-4 nm could sustain scattering, but were able to show that not only did it occur, but that the effect was independent of the type of dye molecules used and their photophysics. "Thus," Dr. Garcia-Moreno claims, "dye-doped POSS solutions could be defined as a kind of universal gain media, overcoming the dye/host specificity that has been recognized as one of the greatest limitations of these laser systems."

Other advantages include "the easy synthesis of the POSS-based hybrid materials" and "their significantly improved physical, thermal, and optical properties as compared with the materials used up to now for incorporating lasing dyes". The researchers therefore see the possibility of using these new hybrid materials as alternative sources for optoelectronic devices, competing with dendronized or grafted polymers. "The POSS-based materials show the potential to bring to life a practical, commercial, easy-to-handle, and stable solid-state dye laser."


Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission

A. Costela, I. Garcia-Moreno*, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, Advanced Materials, 2009, DOI: 10.1002/adma.200900799

Available online at doi.wiley.com/10.1002/adma.200900799 on June 2, 2009.

####

About WILEY-VCH
Carmen Teutsch
Assistant Editor
Macromolecular Journals / Plasma Processes & Polymers
Wiley-VCH Verlag GmbH & Co.KGaA
Boschstraße 12
D - 69469 Weinheim
Phone: +49 (0) 6201 - 606 238
Fax: +49 (0) 6201 - 606 309

Copyright © WILEY-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Discoveries

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Announcements

Nanoscience makes your wine better September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

Photonics/Optics/Lasers

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE