Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists advance safety of nanotechnology

Abstract:
Scientists counteract nanoparticle lung damage in mice

Scientists advance safety of nanotechnology

China | Posted on June 15th, 2009

Scientists have identified for the first time a mechanism by which nanoparticles cause lung damage and have demonstrated that it can be combated by blocking the process involved, taking a step toward addressing the growing concerns over the safety of nanotechnology.

Nanotechnology, the science of the extremely tiny (one nanometre is one-billionth of a metre), is an important emerging industry with a projected annual market of around one trillion US dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions, including many that could be exceptionally beneficial in medicine. However, concerns are growing that it may have toxic effects, particularly damage to the lungs. Although nanoparticles have been linked to lung damage, it has not been clear how they cause it.

In a study published online today (Thursday 11 June) in the newly launched Journal of Molecular Cell Biology [1] Chinese researchers discovered that a class of nanoparticles being widely developed in medicine - ployamidoamine dendrimers (PAMAMs) - cause lung damage by triggering a type of programmed cell death known as autophagic cell death. They also showed that using an autophagy inhibitor prevented the cell death and counteracted nanoparticle-induced lung damage in mice.

"This provides us with a promising lead for developing strategies to prevent lung damage caused by nanoparticles. Nanomedicine holds extraordinary promise, particularly for diseases such as cancer and viral infections, but safety concerns have recently attracted great attention and with the technology evolving rapidly, we need to start finding ways now to protect workers and consumers from any toxic effects that might come with it," said the study's leader, Dr. Chengyu Jiang, a molecular biologist at the Chinese Academy of Medical Sciences in Beijing, China.

The first nanomaterial was developed by German scientists in 1984. Nanomaterials are now used in a variety of products, including sporting goods, cosmetics and electronics. The fact that unusual physical, chemical, and biological properties can emerge in materials at the nanoscale makes them particularly appealing for medicine. Scientists hope nanoparticles will be able to improve the effectiveness of drugs and gene therapy by carrying them to the right place in the body and by targeting specific tissues, regulating the release of drugs and reducing damage to healthy tissues. They also envision the possibility of implantable nano devices that would detect disease, treat it and report to the doctor automatically from inside the body. The US Food and Drug Administration has approved some first generation nanodrugs. One example is Abraxane, a nanoformulation of the anti-cancer chemotherapy paclitaxel.

Lung damage is the chief human toxicity concern surrounding nanotechnology, with studies showing that most nanoparticles migrate to the lungs. However, there are also worries over the potential for damage to other organs.

In the study, the researchers first showed, through several independent experiments, that several types of PAMAMs killed human lung cells in the lab. They did not observe any evidence that the cells were dying by apoptosis, a common type of programmed cell death. However, they found that the particles triggered autophagic cell death through the Akt-TSC2-mTOR signalling pathway. Autophagy is a process that degrades damaged materials in a cell and plays a normal part in cell growth and renewal, but scientists have found that sometimes an overactivity of this destruction process leads to cell death.

The researchers also found that treating the cells with an autophagy inhibitor known as 3MA significantly inhibited the process, increasing the number of cells that survived exposure to the nanoparticles.

"Those results, taken together, showed that autophagy plays a critical role in the nanoparticle-induced cell death," said Dr. Jiang.

The scientists then tested their findings in mice. They found that introducing the toxic nanoparticles significantly increased lung inflammation and death rates in the mice, but injecting the mice with the autophagy inhibitor 3MA before introducing the nanoparticles significantly ameliorated the lung damage and improved survival rates.

"These experiments indicate that autophagy is indeed involved in lung damage caused by these nanoparticles and that inhibition of this process might have therapeutic effects," Dr. Jiang said. "We will likely need to look for additional new inhibitors to block lung damage as this particular compound is not stable in humans, but this gives us a promising lead for the first time."

"Our study has identified the principle for developing such compounds. The idea is that, to increase the safety of nanomedicine, compounds could be developed that could either be incorporated into the nano product to protect against lung damage, or patients could be given pills to counteract the effects," Dr. Jiang said, adding that the findings could also provide important insight into how nanopaticles cause other toxic effects.

It is not clear whether other types of nanoparticles would cause lung damage via the same mechanism, but some may, Dr. Jiang said. The group's research also suggests that blocking autophagic cell death could perhaps be useful in combating other causes of lung damage.

[1] PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signalling pathway. Journal of Molecular Cell Biology. doi:10.1093/jmcb/mjp002

Notes:

The Journal of Molecular Cell Biology is published by Oxford Journals, a division of Oxford University Press, on behalf of the Chinese Academy of Sciences and the Chinese Society for Cell Biology.

Please acknowledge the journal as a source in any article.

####

About Oxford University Press
Oxford Journals is a division of Oxford University Press, which is a department of Oxford University. We publish well over 200 academic and research journals covering a broad range of subject areas, two-thirds of which are published in collaboration with learned societies and other international organizations.

For more information, please click here

Contacts:
Emma Ross

Oxford University Press

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Nanomedicine

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Safety-Nanoparticles/Risk management

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project