Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Colorado State University researchers find that atomic vibrations lead to atom manipulations

Abstract:
As electronic devices get smaller and the methods for small-scale manufacturing advance, scientists at Colorado State University are working to perfect even smaller structures by manipulating individual atoms.

Colorado State University researchers find that atomic vibrations lead to atom manipulations

FORT COLLINS, CO | Posted on June 11th, 2009

A new study from Colorado State University graduate student Byungsoo Kim and associate professor of mathematics Vakhtang Putkaradze reveals that scientists can extract and replace a single atom. Collaborating on the research is Professor Takashi Hikihara from the Department of Electrical Engineering at Kyoto University in Japan.

By using the tip of an atomic force microscope - a device that resembles a long needle that probes atoms - researchers were able to show that an atom could be extracted from a lattice structure without damaging surrounding atoms. Further, the extracted atom could be deposited back into the hole that was created or where a neighboring atom once was located.

"This is like putting nails in the wall and taking them out, only the nails are atoms, the wall is lattice of atoms and the tool is the tip of atomic force microscope," said Putkaradze. "This tool is billions of billions times larger than the nails. It is a bit like doing home improvement projects with a tool that is much larger than the house. We know that this tool can deposit the atoms in the lattice, so the force between the atom and the lattice must be stronger than the force between the tool and the atom."

"On the other hand, we also know that with the same tool we can extract the atoms from the lattice, so the force between the atom and the tool must be stronger than the atom and the lattice," Putkaradze said.

This puzzle was resolved by CSU-Kyoto team. "We showed that you can both take atoms out of the lattice and put them back," Putkaradze said. "This atomic construction is much easier on some levels than 'regular' construction because of atomic vibrations; the atoms will go in and get out all by themselves, with no force necessary, just by keeping the hammer close enough and long enough to the nail and you can either take the nail out or put it in."

"The impact of this research could result in smaller, faster and more energy efficient electrical devices, such as, computers and cell phones," said Putkaradze. "There is the potential that current computers or cell phones could be 100 times faster as a result of smaller transistors and microchips. The devices would also be more energy efficient in the process."

The extraction and deposition of single atoms using the atomic force microscope tip is also a promising technique for building nanostructures. Nanotechnology is the science of creating electronic circuits and devices that are designed and built from single atoms and molecules on a scale of nanometers. One nanometer is one billionth of one meter; the size of one human hair is about 1,000 nanometers.

The study was published in the May 29, 2009, edition of Physical Review Letters.

####

For more information, please click here

Contacts:
Jim Beers
(970) 491-6401

Copyright © Colorado State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Imaging

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Tools

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project