Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > QD Vision Awarded U.S. Army SBIR Phase II Grant Totaling $775,000

Abstract:
Maker of Nanotech-based Products to Develop Micro-Displays using Quantum-Dot Light-Emitting Devices (QLEDs)

QD Vision Awarded U.S. Army SBIR Phase II Grant Totaling $775,000

Watertown, MA | Posted on June 9th, 2009

QD Vision (www.qdvision.com), developer of nanotechnology-based products for lighting and displays, today announced it has been awarded a Small Business Innovation Research (SBIR) Phase II contract by the U.S. Army as part of its Night Vision and Electronic Sensors Directorate (NVESD). Combined with new, additional funds for a Phase I option period, the award totals $775,000.

Under the grant, QD Vision will develop for NVESD, micro-displays based on quantum- dot-based light-emitting devices (QLEDs). Quantum dots are nanometer-sized, inorganic crystals that create light when stimulated with photons or electrons. QD Vision's high resolution printing technology, along with the quantum dot's extremely small size, makes the technology a logical choice for the small feature sizes required by micro-displays.

QD Vision was selected from a number of competitors for this SBIR program that funds research and development for technological solutions to meet critical Army needs. The company will leverage experience gained in Phase I of the program, titled, "Direct Patterning of Emitters for Micro-Displays," to develop the small, portable, micro-displays based on QLEDs.

"Being selected for Phase II of this grant is a tremendous achievement, and it demonstrates great confidence in QD Vision and its nanotechnology-based products," said Dr. Seth Coe-Sullivan, QD Vision co-founder and Chief Technology Officer. "Our extensive experience will help the Army to meet its requirements for state-of-the-art micro-displays."

Micro-displays are a key component of indirect viewing systems, and are used in applications that require high resolution, brightness, color contrast and power efficiency. They are featured in applications such as video headsets, helmet-mounted displays, wearable computers and other portable devices. QD Vision will leverage its leadership in quantum-dot materials and deposition techniques to develop micro-displays that feature high luminance contrast, saturated colors, and improved distinction and resolution of color coded data.

Research supported by the SBIR program stimulates technological innovation and promotes the productivity and economic growth of the nation.

####

About QD Vision
QD Vision (www.qdvision.com) is a quantum-dot product company that delivers highly differentiated lighting solutions to major industries where color, power and design matter. QD Vision’s Quantum Light™ platform enables step-change advances over other display and lighting solutions such as liquid-crystal displays (LCDs), plasma displays, light-emitting diodes (LEDs), and even organic LEDs (OLEDs). QD Vision is actively designing in products with industry-leading companies in target markets including cleantech applications, such as solid state lighting, consumer electronics and flat panel displays, electronic signage, and defense. Leveraging a first-tier patent position in nanotechnology originating at MIT, QD Vision is a privately held company based in the Watertown, Mass.

For more information, please click here

Contacts:
Aquarius Advisers
Mel Webster, 617-494-9800

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Military

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Quantum Dots/Rods

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE