Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Manipulating light on a chip for quantum technologies

An artist's impression of the on-chip quantum metrology experiment (making ultraprecise measurements on chip) 

Photo by Will Amery, University of Bristol
An artist's impression of the on-chip quantum metrology experiment (making ultraprecise measurements on chip) Photo by Will Amery, University of Bristol

Abstract:
A team of physicists and engineers at Bristol University has demonstrated exquisite control of single particles of light — photons — on a silicon chip to make a major advance towards long-sought-after quantum technologies, including super-powerful quantum computers and ultra-precise measurements.

Manipulating light on a chip for quantum technologies

Bristol, UK | Posted on June 8th, 2009

The Bristol Centre for Quantum Photonics has demonstrated precise control of four photons using a microscopic metal electrode lithographically patterned onto a silicon chip.

The photons propagate in silica waveguides — much like in optical fibres — patterned on a silicon chip, and are manipulated with the electrode, resulting in a high-performance miniaturized device.

"We have been able to generate and manipulate entangled states of photons on a silicon chip" said PhD student, Jonathan Matthews, who together with Alberto Politi performed the experiments. "These entangled states are responsible for famously ‘weird' behaviour arising in quantum mechanics, but are also at the heart of powerful quantum technologies."

"This precise manipulation is a very exciting development for fundamental science as well as for future quantum technologies." said Prof Jeremy O'Brien, Director of the Centre for Quantum Photonics, who led the research.

The team reports its results in the latest issue of Nature Photonics [June 2009], a sister journal of the leading science journal Nature, and in a Postdeadline Paper at 'The International Quantum Electronics Conference (IQEC)' on June 4 in Baltimore, USA [IQEC Postdeadline Papers].

Quantum technologies with photons

Quantum technologies aim to exploit the unique properties of quantum mechanics, the physics theory that explains how the world works at microscopic scales.

For example a quantum computer relies on the fact that quantum particles, such as photons, can exist in a "superposition" of two states at the same time — in stark contrast to the transistors in a PC which can only be in the state "0" or "1".

Photons are an excellent choice for quantum technologies because they are relatively noise-free; information can be moved around at the speed of light; and manipulating single photons is easy.

Making two photons "talk" to each other to generate the all-important entangled states is much harder, but Professor O'Brien and his colleagues at the University of Queensland demonstrated this in a quantum logic gate back in 2003 [Nature 426, 264 (2003)].

Last year, the Centre for Quantum Photonics at Bristol showed how such interactions between photons could be realised on a silicon chip, pointing the way to advanced quantum technologies based on photons [Science 320, 646 (2008)].

Photons are also required to "talk" to each other to realise the ultra-precise measurements that harness the laws of quantum mechanics. In 2007 Professor O'Brien and his Japanese collaborators reported such a quantum metrology measurement with four photons [Science 316, 726 (2007)].

Manipulating photons on a silicon chip

"Despite these impressive advances, the ability to manipulate photons on a chip has been missing," said Mr Politi. "For the last several years the Centre for Quantum Photonics has been working towards building fully functional quantum circuits on a chip to solve these problems," added Prof O'Brien.

The team coupled photons into and out of the chip, fabricated at CIP Technologies, using optical fibres. Application of a voltage across the metal electrode changed the temperature of the silica waveguide directly beneath it, thereby changing the path that the photons travelled. By measuring the output of the device they confirmed high-performance manipulation of photons in the chip.

The researchers proved that one of the strangest phenomena of the quantum world, namely "quantum entanglement", was achieved on-chip with up to four photons. Quantum entanglement of two particles means that the state of either of the particles is not defined, but only their collective state, and results in an instantaneous linking of the particles.

This on-chip entanglement has important applications in quantum metrology and the team demonstrated an ultra-precise measurement in this way.

"As well as quantum computing and quantum metrology, on-chip photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations," said Alberto Politi.

"The really exciting thing about this result is that it will enable the development of reconfigurable and adaptive quantum circuits for photons. This opens up all kinds of possibilities," said Prof O'Brien.

A commentary on the work that appeared in the same issue [Nature Photonics 3, 317 (2009)] described it as "an important step in the quest for quantum computation" and concluded: "The most exciting thing about this work is its potential for scalability. The small size of the [device] means that far greater complexity is possible than with large-scale optics."

The other co-author of the Nature Photonics paper is Dr André Stefanov, formerly a Research fellow in the Centre for Quantum Photonics, and now at the Federal Office of Metrology METAS, Switzerland.

The work was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), the US government Intelligence Advanced Research Projects Activity (IARPA) and the Leverhulme Trust.

####

About Bristol University
Research of the highest standard is at the heart of our mission. It contributes to the University's international reputation, it informs and stimulates our teaching and it contributes to the economy of the South West, the UK and globally. In the latest independent assessment of research quality (RAE 2008), over 61 per cent of the research work assessed in 48 research fields at Bristol was awarded either the top 4* rating, defined as ‘world leading’, or the 3* rating, classed as ‘internationally excellent'. Bristol is also one of the leaders in the UK university enterprise agenda, building on research and education to deliver benefit to the local community and the UK knowledge economy.

For more information, please click here

Contacts:
Professor Jeremy O'Brien

Copyright © Bristol University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Chip Technology

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Quantum Computing

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Discovery paves way for new kinds of superconducting electronics June 22nd, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Tools

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Keysight Technologies Introduces Ultrafast-Scanning 9500 Atomic Force Microscope: New Integrated Software, Hardware Delivers Unmatched Scan Rates June 29th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project