Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Manipulating light on a chip for quantum technologies

An artist's impression of the on-chip quantum metrology experiment (making ultraprecise measurements on chip) 

Photo by Will Amery, University of Bristol
An artist's impression of the on-chip quantum metrology experiment (making ultraprecise measurements on chip) Photo by Will Amery, University of Bristol

Abstract:
A team of physicists and engineers at Bristol University has demonstrated exquisite control of single particles of light — photons — on a silicon chip to make a major advance towards long-sought-after quantum technologies, including super-powerful quantum computers and ultra-precise measurements.

Manipulating light on a chip for quantum technologies

Bristol, UK | Posted on June 8th, 2009

The Bristol Centre for Quantum Photonics has demonstrated precise control of four photons using a microscopic metal electrode lithographically patterned onto a silicon chip.

The photons propagate in silica waveguides — much like in optical fibres — patterned on a silicon chip, and are manipulated with the electrode, resulting in a high-performance miniaturized device.

"We have been able to generate and manipulate entangled states of photons on a silicon chip" said PhD student, Jonathan Matthews, who together with Alberto Politi performed the experiments. "These entangled states are responsible for famously ‘weird' behaviour arising in quantum mechanics, but are also at the heart of powerful quantum technologies."

"This precise manipulation is a very exciting development for fundamental science as well as for future quantum technologies." said Prof Jeremy O'Brien, Director of the Centre for Quantum Photonics, who led the research.

The team reports its results in the latest issue of Nature Photonics [June 2009], a sister journal of the leading science journal Nature, and in a Postdeadline Paper at 'The International Quantum Electronics Conference (IQEC)' on June 4 in Baltimore, USA [IQEC Postdeadline Papers].

Quantum technologies with photons

Quantum technologies aim to exploit the unique properties of quantum mechanics, the physics theory that explains how the world works at microscopic scales.

For example a quantum computer relies on the fact that quantum particles, such as photons, can exist in a "superposition" of two states at the same time — in stark contrast to the transistors in a PC which can only be in the state "0" or "1".

Photons are an excellent choice for quantum technologies because they are relatively noise-free; information can be moved around at the speed of light; and manipulating single photons is easy.

Making two photons "talk" to each other to generate the all-important entangled states is much harder, but Professor O'Brien and his colleagues at the University of Queensland demonstrated this in a quantum logic gate back in 2003 [Nature 426, 264 (2003)].

Last year, the Centre for Quantum Photonics at Bristol showed how such interactions between photons could be realised on a silicon chip, pointing the way to advanced quantum technologies based on photons [Science 320, 646 (2008)].

Photons are also required to "talk" to each other to realise the ultra-precise measurements that harness the laws of quantum mechanics. In 2007 Professor O'Brien and his Japanese collaborators reported such a quantum metrology measurement with four photons [Science 316, 726 (2007)].

Manipulating photons on a silicon chip

"Despite these impressive advances, the ability to manipulate photons on a chip has been missing," said Mr Politi. "For the last several years the Centre for Quantum Photonics has been working towards building fully functional quantum circuits on a chip to solve these problems," added Prof O'Brien.

The team coupled photons into and out of the chip, fabricated at CIP Technologies, using optical fibres. Application of a voltage across the metal electrode changed the temperature of the silica waveguide directly beneath it, thereby changing the path that the photons travelled. By measuring the output of the device they confirmed high-performance manipulation of photons in the chip.

The researchers proved that one of the strangest phenomena of the quantum world, namely "quantum entanglement", was achieved on-chip with up to four photons. Quantum entanglement of two particles means that the state of either of the particles is not defined, but only their collective state, and results in an instantaneous linking of the particles.

This on-chip entanglement has important applications in quantum metrology and the team demonstrated an ultra-precise measurement in this way.

"As well as quantum computing and quantum metrology, on-chip photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations," said Alberto Politi.

"The really exciting thing about this result is that it will enable the development of reconfigurable and adaptive quantum circuits for photons. This opens up all kinds of possibilities," said Prof O'Brien.

A commentary on the work that appeared in the same issue [Nature Photonics 3, 317 (2009)] described it as "an important step in the quest for quantum computation" and concluded: "The most exciting thing about this work is its potential for scalability. The small size of the [device] means that far greater complexity is possible than with large-scale optics."

The other co-author of the Nature Photonics paper is Dr André Stefanov, formerly a Research fellow in the Centre for Quantum Photonics, and now at the Federal Office of Metrology METAS, Switzerland.

The work was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), the US government Intelligence Advanced Research Projects Activity (IARPA) and the Leverhulme Trust.

####

About Bristol University
Research of the highest standard is at the heart of our mission. It contributes to the University's international reputation, it informs and stimulates our teaching and it contributes to the economy of the South West, the UK and globally. In the latest independent assessment of research quality (RAE 2008), over 61 per cent of the research work assessed in 48 research fields at Bristol was awarded either the top 4* rating, defined as ‘world leading’, or the 3* rating, classed as ‘internationally excellent'. Bristol is also one of the leaders in the UK university enterprise agenda, building on research and education to deliver benefit to the local community and the UK knowledge economy.

For more information, please click here

Contacts:
Professor Jeremy O'Brien

Copyright © Bristol University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Chip Technology

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Quantum Computing

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

Squeezed quantum cats May 28th, 2015

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Tools

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project