Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers test nanoparticle to treat cardiovascular disease in mice

This is an image of a multifunctional micelle designed by research team.

Credit: Peter Allen, UCSB College of Engineering
This is an image of a multifunctional micelle designed by research team.

Credit: Peter Allen, UCSB College of Engineering

Abstract:
Scientists and engineers at UC Santa Barbara and other researchers have developed a nanoparticle that can attack plaque -- a major cause of cardiovascular disease. The new development is described in a recent issue of the Proceedings of the National Academy of Sciences.

Researchers test nanoparticle to treat cardiovascular disease in mice

Santa Barbara, CA | Posted on June 5th, 2009

The treatment is promising for the eventual development of therapies for cardiovascular disease, which is blamed for one third of the deaths in the United States each year. Atherosclerosis, which was the focus of this study, is one of the leading causes of cardiovascular disease. In atherosclerosis, plaque builds up on the walls of arteries and can cause heart attack and stroke.

"The purpose of our grant is to develop targeted nanoparticles that specifically detect atherosclerotic plaques," said Erkki Ruoslahti, distinguished professor at the Burnham Institute for Medical Research at the University of California, Santa Barbara. "We now have at least one peptide, described in the paper, that is capable of directing nanoparticles to the plaques."

The nanoparticles in this study are lipid-based collections of molecules that form a sphere called a micelle. The micelle has a peptide, a piece of protein, on its surface, and that peptide binds to the surface of the plaque.

Co-author Matthew Tirrell, The Richard A. Auhll Professor and dean of UCSB's College of Engineering, specializes in lipid-based micelles. "This turned out to be a perfect fit with our targeting technology," said Ruoslahti.

To accomplish the research, the team induced atherosclerotic plaques in mice by keeping them on a high-fat diet. They then intravenously injected these mice with the micelles, which were allowed to circulate for three hours.

"One important element in what we did was to see if we could target not just plaques, but the plaques that are most vulnerable to rupture," said Ruoslahti. "It did seem that we were indeed preferentially targeting those places in the plaques that are prone to rupture."

The plaques tend to rupture at the "shoulder," where the plaque tissue meets the normal tissue. "That's also a place where the capsule on the plaque is the thinnest," said Ruoslahti. "So by those criteria, we seem to be targeting the right places."

Tirrell added:"We think that self-assembled micelles (of peptide amphiphiles) of the sort we have used in this work are the most versatile, flexible nanoparticles for delivering diagnostic and therapeutic biofunctionality in vivo. The ease with which small particles, with sufficiently long circulation times and carrying peptides that target and treat pathological tissue, can be constructed by self-assembly is an important advantage."

Ruoslahti said that UCSB's strength in the areas of materials, chemistry, and bioengineering facilitated this research. He noted that he and Tirrell have been close collaborators.

The work was funded by a grant from the National Heart, Lung and Blood Institute of the National Institutes of Health.

In addition to Ruoslahti and Tirrell, the article, "Targeting Atherosclerosis Using Modular, Multifunctional Micelles," was authored by David Peters of the Burnham Institute at UCSB and the Biomedical Sciences Graduate Group at UC San Diego; Mark Kastantin of UCSB's Department of Chemical Engineering; Venkata Ramana Kotamraju of the Burnham Institute at UCSB; Priya P. Karmali of the Cancer Research Center, Burnham Institute for Medical Research in La Jolla; and Kunal Gujraty of the Burnham Institute at UCSB.

####

For more information, please click here

Contacts:
Gail Gallessich

805-893-7220

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic