Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Luxtera Announces Production Status of World’s First Commercial Silicon CMOS Photonics Fabrication Process

Abstract:
Luxtera is Collaborating With Freescale Semiconductor to Enable High Volume Manufacturing of Monolithic Electro-Photonic Integrated Circuits - Bringing CMOS Photonics to Mainstream Markets

Luxtera Announces Production Status of World’s First Commercial Silicon CMOS Photonics Fabrication Process

CARLSBAD, CA | Posted on June 4th, 2009

Luxtera, the worldwide leader in Silicon CMOS Photonics, today announced its collaboration with Freescale Semiconductor as its foundry source to achieve production of the world's first commercial Silicon CMOS Photonics semiconductor manufacturing process. For a number of years, the companies collaborated on enhancing Freescale's SOI CMOS semiconductor fabrication process, at its Austin, Texas manufacturing facility, to add photonic circuit capabilities to an existing 130nm electronics manufacturing process. This new photonically enabled CMOS fabrication process enables development and manufacturing of low cost Electro-Photonic Integrated Circuits (EPIC) bringing CMOS Photonics to mainstream markets ahead of the competition. Silicon CMOS Photonics is widely recognized as the key enabler of the next-generation of data-networking, computer, multi-core processor, and consumer electronics products.

Silicon CMOS Photonics technology enables design and manufacturing of optics and electronics on a single CMOS die. This process combines standard transistors for digital and analogue electronic circuitry with passive nano-photonic optical structures, as well as monolithic integration of active photonic device elements and enables direct fiber-to-the-chip attachments. The new fabrication process allows the production of integrated single chip transceivers for a multitude of applications. These CMOS Photonic transceivers offer better performance, increased reliability, and reduced power consumption of opto-electronic circuits at a fraction of the cost of traditional optical assemblies.

"By enabling the production process of Silicon CMOS Photonics devices, we are showcasing our forward thinking in advanced semiconductor manufacturing," said Vivek Mohindra, senior vice president of strategy and business transformation of Freescale. "Luxtera is an industry leader in the development of optical CMOS technology. Collaborating with Luxtera, we have become the first fabrication facility to enable the manufacturing of optics and electronics on a single CMOS chip and meet the high volume, low cost application needs of the communication and consumer markets. We are ahead of the competition by achieving the production status and shipping of commercial Silicon CMOS Photonics products based on this process."

"Luxtera has pushed the forefront of the technology and is recognized as the world leader in the field of Silicon CMOS Photonics. By achieving volume production status in Freescale's commercial foundry, we have now demonstrated that CMOS Photonics has emerged from research and is now fully ready for mainstream commercial adoption," said Greg Young, president and CEO of Luxtera. "A key element of our technology is that we enable both optical and electronic circuits on a common mainstream CMOS process, which is the industry's first. Our Silicon CMOS Photonics technology platform provides us with unprecedented levels of cost, performance, power and reliability in optical systems from gigabits to terabits of data."

Luxtera is currently applying this process technology to deliver low cost opto-electronic transceiver products for a number of high performance computing, data communications, and consumer electronics markets. The adaptation of Luxtera's technology by Freescale demonstrates the company's flexibility to customize its manufacturing processes to applications that have large market potential for growth. Luxtera is also involved with projects funded by the Defense Advanced Research Projects Agency's (DARPA) program to develop next-generation optical interconnects to produce chip-to-chip and intra-chip interconnect technology for high performance computing systems.

Freescale is a world leader in advanced semiconductor technology and its Foundry Services Operation, headquartered in Austin, Texas, offers 200mm development and manufacturing services for a variety of differentiating semiconductor technologies. Foundry Services information is available at www.freescale.com/foundry. Companies interested in foundry services should contact Freescale at

Companies interested in the purchase or design of opto-electronic CMOS products should contact Luxtera at (760) 448-3520.

####

About Luxtera
Luxtera, Inc. is the world leader in Silicon CMOS Photonics. Its mission is to fulfill the world’s insatiable demand for bandwidth by uniting the high performance of fiber-optic communications with the low cost and high volume manufacturing advantages of mainstream Silicon CMOS fabrication. Headquartered in Carlsbad, California, Luxtera is a fabless semiconductor company that was founded in 2001 by a team of industry-renowned researchers and technology managers drawn from the communications and semiconductor industries. Luxtera has received funding from leading venture capitalists including August Capital, New Enterprise Associates, Sevin Rosen Funds and Lux Capital.

For more information, please click here

Contacts:
Vantage Communications
Luxtera
Katie Lister
407-767-0452 ext. 229

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Chip Technology

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Announcements

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Photonics/Optics/Lasers

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Advanced Nanomechanical Characterization Centre Open in India: Nanomechanics, Inc. announces the establishment of the joint technology development center in Hyderabad, India July 5th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project