Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Aluminum-oxide Nanopore Beats Other Material For DNA analysis

Rashid Bashir, a Bliss Professor of electrical and computer engineering and of bioengineering, center, led the researchers who developed a new solid-state nanopore sensor. He is flanked by graduate students Murali Venkatesan, left, and Sukru Yemenicioglu.

Photo by L. Brian Stauffer.
Rashid Bashir, a Bliss Professor of electrical and computer engineering and of bioengineering, center, led the researchers who developed a new solid-state nanopore sensor. He is flanked by graduate students Murali Venkatesan, left, and Sukru Yemenicioglu. Photo by L. Brian Stauffer.

Abstract:
Fast and affordable genome sequencing has moved a step closer with a new solid-state nanopore sensor being developed by researchers at the University of Illinois.

Aluminum-oxide Nanopore Beats Other Material For DNA analysis

Champaign, IL | Posted on June 2nd, 2009

The nanopore sensor, made by drilling a tiny hole through a thin film of aluminum oxide, could ultimately prove capable of performing DNA analysis with a single molecule, offering tremendous possibilities for personalized medicine and advanced diagnostics.

"Solid-state nanopore sensors have shown superior chemical, thermal and mechanical stability over their biological counterparts, and can be fabricated using conventional semiconductor processes," said Rashid Bashir, a Bliss Professor of electrical and computer engineering and bioengineering, and the director of the university's Micro and Nanotechnology Laboratory.

"The aluminum-oxide nanopore sensors go a step further," Bashir said, "exhibiting superior mechanical properties, enhanced noise performance and increased lifetime over their silicon-oxide and silicon-nitride counterparts."

The researchers describe the fabrication and operation of the aluminum-oxide nanopore sensor in a paper accepted for publication in Advanced Materials, and posted on the journal's Web site.

To make the sensor, the researchers begin by using a technique called atomic layer deposition to produce a very thin film of aluminum oxide on a silicon substrate.

Next, the central portion of the substrate is etched away, leaving the film as a suspended membrane. An electron beam is then used to create a very tiny hole - a nanopore - in the membrane.

The process of making the nanopore resulted in an unexpected bonus, Bashir said. "As the electron beam forms the nanopore, it also heats the surrounding material, forming nanocrystallites around the nanopore. These crystals help to improve the mechanical integrity of the nanopore structure and could potentially improve noise performance as well."

The nanopore sensors described in the paper had pore diameters ranging in size from 4 to 16 nanometers, and a film thickness of approximately 50 nanometers. Thinner membranes are possible with atomic layer deposition, Bashir said, and would offer higher resolution of the detection.

"Thinner membranes can produce less noise as a molecule travels through the nanopore," said Bashir, who is also affiliated with the university's Beckman Institute, the Frederick Seitz Materials Research Laboratory, and the Institute for Genomic Biology. "Ultimately, we'd like to make our membranes as thin as biological membranes, which are about 5 nanometers thick."

To demonstrate the functionality of the aluminum-oxide nanopores, the researchers performed experiments with pieces of DNA containing approximately 5,000 base pairs. Bashir's team verified the detection of single molecules, with a signal-to-noise performance comparable to that achieved with other solid-state nanopore technology.

"More work must be done to achieve single base resolution, however," Bashir said. "Our next step is to detect and measure significantly shorter molecules."

With Bashir, co-authors of the paper are graduate students Bala Murali Venkatesan (lead author), Brian Dorvel, Sukru Yemenicioglu and Nicholas Watkins, and principal research scientist Ivan Petrov.

Funding was provided by the National Institutes of Health.

####

About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
Rashid Bashir
217-333-3097

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Possible Futures

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

Nanomedicine

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Starpharma initiates new DEPô drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Announcements

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Nanobiotechnology

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Starpharma initiates new DEPô drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic